| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodpr.1 | ⊢ ( 𝑘  =  𝐴  →  𝐷  =  𝐸 ) | 
						
							| 2 |  | prodpr.2 | ⊢ ( 𝑘  =  𝐵  →  𝐷  =  𝐹 ) | 
						
							| 3 |  | prodpr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | prodpr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 5 |  | prodpr.e | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 6 |  | prodpr.f | ⊢ ( 𝜑  →  𝐹  ∈  ℂ ) | 
						
							| 7 |  | prodpr.3 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 8 |  | prodtp.1 | ⊢ ( 𝑘  =  𝐶  →  𝐷  =  𝐺 ) | 
						
							| 9 |  | prodtp.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 10 |  | prodtp.g | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 11 |  | prodtp.2 | ⊢ ( 𝜑  →  𝐴  ≠  𝐶 ) | 
						
							| 12 |  | prodtp.3 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 13 |  | disjprsn | ⊢ ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( { 𝐴 ,  𝐵 }  ∩  { 𝐶 } )  =  ∅ ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ∩  { 𝐶 } )  =  ∅ ) | 
						
							| 15 |  | df-tp | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) ) | 
						
							| 17 |  | tpfi | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  ∈  Fin | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 ,  𝐶 }  ∈  Fin ) | 
						
							| 19 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 20 | 19 | eltp | ⊢ ( 𝑘  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) ) | 
						
							| 21 | 1 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐴 )  →  𝐷  =  𝐸 ) | 
						
							| 22 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐴 )  →  𝐸  ∈  ℂ ) | 
						
							| 23 | 21 22 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐴 )  →  𝐷  ∈  ℂ ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) )  ∧  𝑘  =  𝐴 )  →  𝐷  ∈  ℂ ) | 
						
							| 25 | 2 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐵 )  →  𝐷  =  𝐹 ) | 
						
							| 26 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐵 )  →  𝐹  ∈  ℂ ) | 
						
							| 27 | 25 26 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐵 )  →  𝐷  ∈  ℂ ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) )  ∧  𝑘  =  𝐵 )  →  𝐷  ∈  ℂ ) | 
						
							| 29 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝐷  =  𝐺 ) | 
						
							| 30 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝐺  ∈  ℂ ) | 
						
							| 31 | 29 30 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝐷  ∈  ℂ ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) )  ∧  𝑘  =  𝐶 )  →  𝐷  ∈  ℂ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) )  →  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) ) | 
						
							| 34 | 24 28 32 33 | mpjao3dan | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝐴  ∨  𝑘  =  𝐵  ∨  𝑘  =  𝐶 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 35 | 20 34 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  →  𝐷  ∈  ℂ ) | 
						
							| 36 | 14 16 18 35 | fprodsplit | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝐷  =  ( ∏ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐷  ·  ∏ 𝑘  ∈  { 𝐶 } 𝐷 ) ) | 
						
							| 37 | 1 2 3 4 5 6 7 | prodpr | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐷  =  ( 𝐸  ·  𝐹 ) ) | 
						
							| 38 | 8 | prodsn | ⊢ ( ( 𝐶  ∈  𝑋  ∧  𝐺  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝐶 } 𝐷  =  𝐺 ) | 
						
							| 39 | 9 10 38 | syl2anc | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐶 } 𝐷  =  𝐺 ) | 
						
							| 40 | 37 39 | oveq12d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  { 𝐴 ,  𝐵 } 𝐷  ·  ∏ 𝑘  ∈  { 𝐶 } 𝐷 )  =  ( ( 𝐸  ·  𝐹 )  ·  𝐺 ) ) | 
						
							| 41 | 36 40 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝐷  =  ( ( 𝐸  ·  𝐹 )  ·  𝐺 ) ) |