Metamath Proof Explorer


Theorem prprc

Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion prprc ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } = ∅ )

Proof

Step Hyp Ref Expression
1 prprc1 ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } )
2 snprc ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ )
3 2 biimpi ( ¬ 𝐵 ∈ V → { 𝐵 } = ∅ )
4 1 3 sylan9eq ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } = ∅ )