Metamath Proof Explorer


Theorem prprc1

Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion prprc1 ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
2 uneq1 ( { 𝐴 } = ∅ → ( { 𝐴 } ∪ { 𝐵 } ) = ( ∅ ∪ { 𝐵 } ) )
3 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
4 uncom ( ∅ ∪ { 𝐵 } ) = ( { 𝐵 } ∪ ∅ )
5 un0 ( { 𝐵 } ∪ ∅ ) = { 𝐵 }
6 4 5 eqtr2i { 𝐵 } = ( ∅ ∪ { 𝐵 } )
7 2 3 6 3eqtr4g ( { 𝐴 } = ∅ → { 𝐴 , 𝐵 } = { 𝐵 } )
8 1 7 sylbi ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } )