Metamath Proof Explorer


Theorem prprc2

Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion prprc2 ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }
2 prprc1 ( ¬ 𝐵 ∈ V → { 𝐵 , 𝐴 } = { 𝐴 } )
3 1 2 eqtrid ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } )