Metamath Proof Explorer


Theorem prprelb

Description: An element of the set of all proper unordered pairs over a given set V is a subset of V of size two. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprelb ( 𝑉𝑊 → ( 𝑃 ∈ ( Pairsproper𝑉 ) ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) )

Proof

Step Hyp Ref Expression
1 prprvalpw ( 𝑉𝑊 → ( Pairsproper𝑉 ) = { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } )
2 1 eleq2d ( 𝑉𝑊 → ( 𝑃 ∈ ( Pairsproper𝑉 ) ↔ 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } ) )
3 eqeq1 ( 𝑝 = 𝑃 → ( 𝑝 = { 𝑎 , 𝑏 } ↔ 𝑃 = { 𝑎 , 𝑏 } ) )
4 3 anbi2d ( 𝑝 = 𝑃 → ( ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
5 4 2rexbidv ( 𝑝 = 𝑃 → ( ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
6 5 elrab ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
7 2 6 bitrdi ( 𝑉𝑊 → ( 𝑃 ∈ ( Pairsproper𝑉 ) ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ) )
8 hash2exprb ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ∃ 𝑎𝑏 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
9 eleq1 ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) )
10 prelpw ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( ( 𝑎𝑉𝑏𝑉 ) ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) )
11 10 el2v ( ( 𝑎𝑉𝑏𝑉 ) ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 )
12 11 biimpri ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 → ( 𝑎𝑉𝑏𝑉 ) )
13 9 12 syl6bi ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑃 ∈ 𝒫 𝑉 → ( 𝑎𝑉𝑏𝑉 ) ) )
14 13 com12 ( 𝑃 ∈ 𝒫 𝑉 → ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑎𝑉𝑏𝑉 ) ) )
15 14 adantld ( 𝑃 ∈ 𝒫 𝑉 → ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) → ( 𝑎𝑉𝑏𝑉 ) ) )
16 15 pm4.71rd ( 𝑃 ∈ 𝒫 𝑉 → ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ↔ ( ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ) )
17 16 2exbidv ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑎𝑏 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎𝑏 ( ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ) )
18 r2ex ( ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎𝑏 ( ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
19 17 18 bitr4di ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑎𝑏 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
20 8 19 bitr2d ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ↔ ( ♯ ‘ 𝑃 ) = 2 ) )
21 20 pm5.32i ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) )
22 7 21 bitrdi ( 𝑉𝑊 → ( 𝑃 ∈ ( Pairsproper𝑉 ) ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) )