Metamath Proof Explorer


Theorem prproe

Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)

Ref Expression
Assertion prproe ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 elpri ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴𝐶 = 𝐵 ) )
2 eleq1 ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) )
3 simprrr ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵𝑉 )
4 necom ( 𝐴𝐵𝐵𝐴 )
5 neeq2 ( 𝐴 = 𝐶 → ( 𝐵𝐴𝐵𝐶 ) )
6 5 eqcoms ( 𝐶 = 𝐴 → ( 𝐵𝐴𝐵𝐶 ) )
7 6 biimpcd ( 𝐵𝐴 → ( 𝐶 = 𝐴𝐵𝐶 ) )
8 4 7 sylbi ( 𝐴𝐵 → ( 𝐶 = 𝐴𝐵𝐶 ) )
9 8 adantr ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐶 = 𝐴𝐵𝐶 ) )
10 9 impcom ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵𝐶 )
11 3 10 eldifsnd ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) )
12 prid2g ( 𝐵𝑉𝐵 ∈ { 𝐴 , 𝐵 } )
13 12 adantl ( ( 𝐴𝑉𝐵𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
14 13 ad2antll ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
15 2 11 14 rspcedvdw ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )
16 15 ex ( 𝐶 = 𝐴 → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
17 eleq1 ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) )
18 simprrl ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴𝑉 )
19 neeq2 ( 𝐵 = 𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
20 19 eqcoms ( 𝐶 = 𝐵 → ( 𝐴𝐵𝐴𝐶 ) )
21 20 biimpcd ( 𝐴𝐵 → ( 𝐶 = 𝐵𝐴𝐶 ) )
22 21 adantr ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐶 = 𝐵𝐴𝐶 ) )
23 22 impcom ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴𝐶 )
24 18 23 eldifsnd ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) )
25 prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )
26 25 adantr ( ( 𝐴𝑉𝐵𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
27 26 ad2antll ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
28 17 24 27 rspcedvdw ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )
29 28 ex ( 𝐶 = 𝐵 → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
30 16 29 jaoi ( ( 𝐶 = 𝐴𝐶 = 𝐵 ) → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
31 1 30 syl ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
32 31 3impib ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )