Metamath Proof Explorer


Theorem prproe

Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)

Ref Expression
Assertion prproe ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 elpri ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴𝐶 = 𝐵 ) )
2 simprrr ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵𝑉 )
3 necom ( 𝐴𝐵𝐵𝐴 )
4 neeq2 ( 𝐴 = 𝐶 → ( 𝐵𝐴𝐵𝐶 ) )
5 4 eqcoms ( 𝐶 = 𝐴 → ( 𝐵𝐴𝐵𝐶 ) )
6 5 biimpcd ( 𝐵𝐴 → ( 𝐶 = 𝐴𝐵𝐶 ) )
7 3 6 sylbi ( 𝐴𝐵 → ( 𝐶 = 𝐴𝐵𝐶 ) )
8 7 adantr ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐶 = 𝐴𝐵𝐶 ) )
9 8 impcom ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵𝐶 )
10 eldifsn ( 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ↔ ( 𝐵𝑉𝐵𝐶 ) )
11 2 9 10 sylanbrc ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) )
12 eleq1 ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) )
13 12 adantl ( ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ∧ 𝑣 = 𝐵 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) )
14 prid2g ( 𝐵𝑉𝐵 ∈ { 𝐴 , 𝐵 } )
15 14 adantl ( ( 𝐴𝑉𝐵𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
16 15 adantl ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
17 16 adantl ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
18 11 13 17 rspcedvd ( ( 𝐶 = 𝐴 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )
19 18 ex ( 𝐶 = 𝐴 → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
20 simprrl ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴𝑉 )
21 neeq2 ( 𝐵 = 𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
22 21 eqcoms ( 𝐶 = 𝐵 → ( 𝐴𝐵𝐴𝐶 ) )
23 22 biimpcd ( 𝐴𝐵 → ( 𝐶 = 𝐵𝐴𝐶 ) )
24 23 adantr ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ( 𝐶 = 𝐵𝐴𝐶 ) )
25 24 impcom ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴𝐶 )
26 eldifsn ( 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ↔ ( 𝐴𝑉𝐴𝐶 ) )
27 20 25 26 sylanbrc ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) )
28 eleq1 ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) )
29 28 adantl ( ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) ∧ 𝑣 = 𝐴 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) )
30 prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )
31 30 adantr ( ( 𝐴𝑉𝐵𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
32 31 adantl ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
33 32 adantl ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
34 27 29 33 rspcedvd ( ( 𝐶 = 𝐵 ∧ ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )
35 34 ex ( 𝐶 = 𝐵 → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
36 19 35 jaoi ( ( 𝐶 = 𝐴𝐶 = 𝐵 ) → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
37 1 36 syl ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) )
38 37 3impib ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴𝐵 ∧ ( 𝐴𝑉𝐵𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } )