Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) |
2 |
|
simprrr |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ 𝑉 ) |
3 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
4 |
|
neeq2 |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
5 |
4
|
eqcoms |
⊢ ( 𝐶 = 𝐴 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
6 |
5
|
biimpcd |
⊢ ( 𝐵 ≠ 𝐴 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
7 |
3 6
|
sylbi |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
9 |
8
|
impcom |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ≠ 𝐶 ) |
10 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ≠ 𝐶 ) ) |
11 |
2 9 10
|
sylanbrc |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
12 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ∧ 𝑣 = 𝐵 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
14 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
17 |
16
|
adantl |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
18 |
11 13 17
|
rspcedvd |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
19 |
18
|
ex |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
20 |
|
simprrl |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ 𝑉 ) |
21 |
|
neeq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
22 |
21
|
eqcoms |
⊢ ( 𝐶 = 𝐵 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
23 |
22
|
biimpcd |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
25 |
24
|
impcom |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ≠ 𝐶 ) |
26 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) |
27 |
20 25 26
|
sylanbrc |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
28 |
|
eleq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ∧ 𝑣 = 𝐴 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
30 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
32 |
31
|
adantl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
33 |
32
|
adantl |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
34 |
27 29 33
|
rspcedvd |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
35 |
34
|
ex |
⊢ ( 𝐶 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
36 |
19 35
|
jaoi |
⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
37 |
1 36
|
syl |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
38 |
37
|
3impib |
⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |