Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) |
2 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
3 |
|
simprrr |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ 𝑉 ) |
4 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
5 |
|
neeq2 |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
6 |
5
|
eqcoms |
⊢ ( 𝐶 = 𝐴 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
7 |
6
|
biimpcd |
⊢ ( 𝐵 ≠ 𝐴 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
8 |
4 7
|
sylbi |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
10 |
9
|
impcom |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ≠ 𝐶 ) |
11 |
3 10
|
eldifsnd |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
12 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
14 |
13
|
ad2antll |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
15 |
2 11 14
|
rspcedvdw |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
16 |
15
|
ex |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
17 |
|
eleq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
18 |
|
simprrl |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ 𝑉 ) |
19 |
|
neeq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
20 |
19
|
eqcoms |
⊢ ( 𝐶 = 𝐵 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
21 |
20
|
biimpcd |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
23 |
22
|
impcom |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ≠ 𝐶 ) |
24 |
18 23
|
eldifsnd |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
25 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
27 |
26
|
ad2antll |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
28 |
17 24 27
|
rspcedvdw |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
29 |
28
|
ex |
⊢ ( 𝐶 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
30 |
16 29
|
jaoi |
⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
31 |
1 30
|
syl |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
32 |
31
|
3impib |
⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |