Step |
Hyp |
Ref |
Expression |
1 |
|
2ne0 |
⊢ 2 ≠ 0 |
2 |
1
|
neii |
⊢ ¬ 2 = 0 |
3 |
|
eqeq1 |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 2 = 0 ) ) |
4 |
2 3
|
mtbiri |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ¬ ( ♯ ‘ 𝑥 ) = 0 ) |
5 |
|
hasheq0 |
⊢ ( 𝑥 ∈ V → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) ) |
6 |
5
|
bicomd |
⊢ ( 𝑥 ∈ V → ( 𝑥 = ∅ ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
7 |
6
|
necon3abid |
⊢ ( 𝑥 ∈ V → ( 𝑥 ≠ ∅ ↔ ¬ ( ♯ ‘ 𝑥 ) = 0 ) ) |
8 |
7
|
elv |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ ( ♯ ‘ 𝑥 ) = 0 ) |
9 |
4 8
|
sylibr |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → 𝑥 ≠ ∅ ) |
10 |
9
|
biantrud |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) ) ) |
11 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
12 |
10 11
|
bitr4di |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) |
13 |
12
|
pm5.32ri |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) ↔ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) ) |
14 |
13
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) } |
15 |
|
df-rab |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) } |
16 |
|
df-rab |
⊢ { 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) } |
17 |
14 15 16
|
3eqtr4ri |
⊢ { 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 2 } |