| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sprval | 
							⊢ ( 𝑉  ∈  V  →  ( Pairs ‘ 𝑉 )  =  { 𝑝  ∣  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } } )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqabrd | 
							⊢ ( 𝑉  ∈  V  →  ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi1d | 
							⊢ ( 𝑉  ∈  V  →  ( ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							r19.41vv | 
							⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( ♯ ‘ 𝑝 )  =  2  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							hashprg | 
							⊢ ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V )  →  ( 𝑎  ≠  𝑏  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							el2v | 
							⊢ ( 𝑎  ≠  𝑏  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							bitr4di | 
							⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( ♯ ‘ 𝑝 )  =  2  ↔  𝑎  ≠  𝑏 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							pm5.32i | 
							⊢ ( ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biancomi | 
							⊢ ( ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( ( 𝑉  ∈  V  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							2rexbidva | 
							⊢ ( 𝑉  ∈  V  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitr3id | 
							⊢ ( 𝑉  ∈  V  →  ( ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 }  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							bitrd | 
							⊢ ( 𝑉  ∈  V  →  ( ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑝 )  =  2 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							abbidv | 
							⊢ ( 𝑉  ∈  V  →  { 𝑝  ∣  ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑝 )  =  2 ) }  =  { 𝑝  ∣  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } )  | 
						
						
							| 16 | 
							
								
							 | 
							df-rab | 
							⊢ { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  =  { 𝑝  ∣  ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑝 )  =  2 ) }  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( 𝑉  ∈  V  →  { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  =  { 𝑝  ∣  ( 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑝 )  =  2 ) } )  | 
						
						
							| 18 | 
							
								
							 | 
							prprval | 
							⊢ ( 𝑉  ∈  V  →  ( Pairsproper ‘ 𝑉 )  =  { 𝑝  ∣  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							3eqtr4rd | 
							⊢ ( 𝑉  ∈  V  →  ( Pairsproper ‘ 𝑉 )  =  { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 } )  | 
						
						
							| 20 | 
							
								
							 | 
							rab0 | 
							⊢ { 𝑝  ∈  ∅  ∣  ( ♯ ‘ 𝑝 )  =  2 }  =  ∅  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( ¬  𝑉  ∈  V  →  { 𝑝  ∈  ∅  ∣  ( ♯ ‘ 𝑝 )  =  2 }  =  ∅ )  | 
						
						
							| 22 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑉  ∈  V  →  ( Pairs ‘ 𝑉 )  =  ∅ )  | 
						
						
							| 23 | 
							
								22
							 | 
							rabeqdv | 
							⊢ ( ¬  𝑉  ∈  V  →  { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  =  { 𝑝  ∈  ∅  ∣  ( ♯ ‘ 𝑝 )  =  2 } )  | 
						
						
							| 24 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑉  ∈  V  →  ( Pairsproper ‘ 𝑉 )  =  ∅ )  | 
						
						
							| 25 | 
							
								21 23 24
							 | 
							3eqtr4rd | 
							⊢ ( ¬  𝑉  ∈  V  →  ( Pairsproper ‘ 𝑉 )  =  { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 } )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							pm2.61i | 
							⊢ ( Pairsproper ‘ 𝑉 )  =  { 𝑝  ∈  ( Pairs ‘ 𝑉 )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  |