Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
prpssnq
Metamath Proof Explorer
Description: A positive real is a subset of the positive fractions. (Contributed by NM , 29-Feb-1996) (Revised by Mario Carneiro , 11-May-2013)
(New usage is discouraged.)
Ref
Expression
Assertion
prpssnq
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q )
Proof
Step
Hyp
Ref
Expression
1
elnpi
⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) )
2
simpl3
⊢ ( ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ⊊ Q )
3
1 2
sylbi
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q )