Metamath Proof Explorer


Theorem prsdm

Description: Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015)

Ref Expression
Hypotheses ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
Assertion prsdm ( 𝐾 ∈ Proset → dom = 𝐵 )

Proof

Step Hyp Ref Expression
1 ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
2 ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 2 dmeqi dom = dom ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
4 3 eleq2i ( 𝑥 ∈ dom 𝑥 ∈ dom ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) )
5 vex 𝑥 ∈ V
6 5 eldm2 ( 𝑥 ∈ dom ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) )
7 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
8 1 7 prsref ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → 𝑥 ( le ‘ 𝐾 ) 𝑥 )
9 df-br ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ↔ ⟨ 𝑥 , 𝑥 ⟩ ∈ ( le ‘ 𝐾 ) )
10 8 9 sylib ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → ⟨ 𝑥 , 𝑥 ⟩ ∈ ( le ‘ 𝐾 ) )
11 simpr ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → 𝑥𝐵 )
12 11 11 opelxpd ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → ⟨ 𝑥 , 𝑥 ⟩ ∈ ( 𝐵 × 𝐵 ) )
13 10 12 elind ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → ⟨ 𝑥 , 𝑥 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) )
14 opeq2 ( 𝑦 = 𝑥 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑥 ⟩ )
15 14 eleq1d ( 𝑦 = 𝑥 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ ⟨ 𝑥 , 𝑥 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) )
16 5 15 spcev ( ⟨ 𝑥 , 𝑥 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) )
17 13 16 syl ( ( 𝐾 ∈ Proset ∧ 𝑥𝐵 ) → ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) )
18 17 ex ( 𝐾 ∈ Proset → ( 𝑥𝐵 → ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) )
19 elinel2 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) )
20 opelxp1 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → 𝑥𝐵 )
21 19 20 syl ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → 𝑥𝐵 )
22 21 exlimiv ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → 𝑥𝐵 )
23 18 22 impbid1 ( 𝐾 ∈ Proset → ( 𝑥𝐵 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) )
24 6 23 bitr4id ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ 𝑥𝐵 ) )
25 4 24 syl5bb ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom 𝑥𝐵 ) )
26 25 eqrdv ( 𝐾 ∈ Proset → dom = 𝐵 )