| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sprel | 
							⊢ ( { 𝑋 ,  𝑌 }  ∈  ( Pairs ‘ 𝑉 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 } )  | 
						
						
							| 2 | 
							
								
							 | 
							preq12bg | 
							⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 }  ↔  ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  ∨  ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑎  =  𝑋  →  ( 𝑎  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcoms | 
							⊢ ( 𝑋  =  𝑎  →  ( 𝑎  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑏  =  𝑌  →  ( 𝑏  ∈  𝑉  ↔  𝑌  ∈  𝑉 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqcoms | 
							⊢ ( 𝑌  =  𝑏  →  ( 𝑏  ∈  𝑉  ↔  𝑌  ∈  𝑉 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							bi2anan9 | 
							⊢ ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpd | 
							⊢ ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑏  =  𝑋  →  ( 𝑏  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcoms | 
							⊢ ( 𝑋  =  𝑏  →  ( 𝑏  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑎  =  𝑌  →  ( 𝑎  ∈  𝑉  ↔  𝑌  ∈  𝑉 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcoms | 
							⊢ ( 𝑌  =  𝑎  →  ( 𝑎  ∈  𝑉  ↔  𝑌  ∈  𝑉 ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bi2anan9 | 
							⊢ ( ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 )  →  ( ( 𝑏  ∈  𝑉  ∧  𝑎  ∈  𝑉 )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							biimpd | 
							⊢ ( ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 )  →  ( ( 𝑏  ∈  𝑉  ∧  𝑎  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ancomsd | 
							⊢ ( ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							jaoi | 
							⊢ ( ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  ∨  ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 ) )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							com12 | 
							⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  ∨  ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( ( 𝑋  =  𝑎  ∧  𝑌  =  𝑏 )  ∨  ( 𝑋  =  𝑏  ∧  𝑌  =  𝑎 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 19 | 
							
								2 18
							 | 
							sylbid | 
							⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 }  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							expcom | 
							⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  →  ( { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 }  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							com23 | 
							⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 }  →  ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							rexlimivv | 
							⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 { 𝑋 ,  𝑌 }  =  { 𝑎 ,  𝑏 }  →  ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 23 | 
							
								1 22
							 | 
							syl | 
							⊢ ( { 𝑋 ,  𝑌 }  ∈  ( Pairs ‘ 𝑉 )  →  ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imp | 
							⊢ ( ( { 𝑋 ,  𝑌 }  ∈  ( Pairs ‘ 𝑉 )  ∧  ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑊 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  |