Metamath Proof Explorer


Theorem prsref

Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b 𝐵 = ( Base ‘ 𝐾 )
isprs.l = ( le ‘ 𝐾 )
Assertion prsref ( ( 𝐾 ∈ Proset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )

Proof

Step Hyp Ref Expression
1 isprs.b 𝐵 = ( Base ‘ 𝐾 )
2 isprs.l = ( le ‘ 𝐾 )
3 id ( 𝑋𝐵𝑋𝐵 )
4 3 3 3 3jca ( 𝑋𝐵 → ( 𝑋𝐵𝑋𝐵𝑋𝐵 ) )
5 1 2 prslem ( ( 𝐾 ∈ Proset ∧ ( 𝑋𝐵𝑋𝐵𝑋𝐵 ) ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑋𝑋 𝑋 ) → 𝑋 𝑋 ) ) )
6 4 5 sylan2 ( ( 𝐾 ∈ Proset ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑋𝑋 𝑋 ) → 𝑋 𝑋 ) ) )
7 6 simpld ( ( 𝐾 ∈ Proset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )