Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | prsref | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 4 | 3 3 3 | 3jca | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 5 | 1 2 | prslem | ⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋 ) → 𝑋 ≤ 𝑋 ) ) ) |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋 ) → 𝑋 ≤ 𝑋 ) ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |