Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
Assertion | prsref | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
4 | 3 3 3 | 3jca | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
5 | 1 2 | prslem | ⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋 ) → 𝑋 ≤ 𝑋 ) ) ) |
6 | 4 5 | sylan2 | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋 ) → 𝑋 ≤ 𝑋 ) ) ) |
7 | 6 | simpld | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |