Metamath Proof Explorer


Theorem prss

Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of Quine p. 49. (Contributed by NM, 30-May-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Hypotheses prss.1 𝐴 ∈ V
prss.2 𝐵 ∈ V
Assertion prss ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 prss.1 𝐴 ∈ V
2 prss.2 𝐵 ∈ V
3 prssg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) )
4 1 2 3 mp2an ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 )