Metamath Proof Explorer


Theorem prssd

Description: Deduction version of prssi : A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses prssd.1 ( 𝜑𝐴𝐶 )
prssd.2 ( 𝜑𝐵𝐶 )
Assertion prssd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 prssd.1 ( 𝜑𝐴𝐶 )
2 prssd.2 ( 𝜑𝐵𝐶 )
3 prssi ( ( 𝐴𝐶𝐵𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 )
4 1 2 3 syl2anc ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐶 )