Metamath Proof Explorer
Description: Deduction version of prssi : A pair of elements of a class is a
subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
prssd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
|
|
prssd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
|
Assertion |
prssd |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
prssd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
prssd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
3 |
|
prssi |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |