Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of Quine p. 49. (Contributed by NM, 22-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐶 ↔ { 𝐴 } ⊆ 𝐶 ) ) | |
| 2 | snssg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ 𝐶 ↔ { 𝐵 } ⊆ 𝐶 ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ ( { 𝐴 } ⊆ 𝐶 ∧ { 𝐵 } ⊆ 𝐶 ) ) ) |
| 4 | unss | ⊢ ( ( { 𝐴 } ⊆ 𝐶 ∧ { 𝐵 } ⊆ 𝐶 ) ↔ ( { 𝐴 } ∪ { 𝐵 } ) ⊆ 𝐶 ) | |
| 5 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 6 | 5 | sseq1i | ⊢ ( { 𝐴 , 𝐵 } ⊆ 𝐶 ↔ ( { 𝐴 } ∪ { 𝐵 } ) ⊆ 𝐶 ) |
| 7 | 4 6 | bitr4i | ⊢ ( ( { 𝐴 } ⊆ 𝐶 ∧ { 𝐵 } ⊆ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 8 | 3 7 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ) |