Metamath Proof Explorer


Theorem prsshashgt1

Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021)

Ref Expression
Assertion prsshashgt1 ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ 𝐶𝑈 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → 2 ≤ ( ♯ ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 elex ( 𝐵𝑊𝐵 ∈ V )
3 id ( 𝐴𝐵𝐴𝐵 )
4 hashprb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
5 4 biimpi ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
6 1 2 3 5 syl3an ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
7 6 ad2antrr ( ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ 𝐶𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
8 hashss ( ( 𝐶𝑈 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) )
9 8 adantll ( ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ 𝐶𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) )
10 7 9 eqbrtrrd ( ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ 𝐶𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → 2 ≤ ( ♯ ‘ 𝐶 ) )
11 10 ex ( ( ( 𝐴𝑉𝐵𝑊𝐴𝐵 ) ∧ 𝐶𝑈 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → 2 ≤ ( ♯ ‘ 𝐶 ) ) )