Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
2 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
3 |
|
id |
⊢ ( 𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵 ) |
4 |
|
hashprb |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
5 |
4
|
biimpi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
6 |
1 2 3 5
|
syl3an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
8 |
|
hashss |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) ) |
9 |
8
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) ) |
10 |
7 9
|
eqbrtrrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → 2 ≤ ( ♯ ‘ 𝐶 ) ) |
11 |
10
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → 2 ≤ ( ♯ ‘ 𝐶 ) ) ) |