Metamath Proof Explorer


Theorem prsspw

Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion prsspw ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 prsspw.1 𝐴 ∈ V
2 prsspw.2 𝐵 ∈ V
3 prsspwg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )
4 1 2 3 mp2an ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) )