Metamath Proof Explorer


Theorem prsspwg

Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016) (Revised by NM, 18-Jan-2018)

Ref Expression
Assertion prsspwg ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 prssg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ) )
2 elpwg ( 𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐶𝐴𝐶 ) )
3 elpwg ( 𝐵𝑊 → ( 𝐵 ∈ 𝒫 𝐶𝐵𝐶 ) )
4 2 3 bi2anan9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶 ) ↔ ( 𝐴𝐶𝐵𝐶 ) ) )
5 1 4 bitr3d ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴𝐶𝐵𝐶 ) ) )