Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016) (Revised by NM, 18-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | prsspwg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ) ) | |
2 | elpwg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶 ) ) | |
3 | elpwg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) | |
4 | 2 3 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
5 | 1 4 | bitr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ 𝒫 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) ) |