Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
2
|
ineq1i |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∩ ( 𝐴 × 𝐴 ) ) |
4 |
|
inass |
⊢ ( ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( ( 𝐵 × 𝐵 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
5 |
3 4
|
eqtri |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( ( 𝐵 × 𝐵 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
6 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝐵 × 𝐵 ) ) |
7 |
6
|
anidms |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 × 𝐴 ) ⊆ ( 𝐵 × 𝐵 ) ) |
8 |
|
sseqin2 |
⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝐵 × 𝐵 ) ↔ ( ( 𝐵 × 𝐵 ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 × 𝐵 ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
10 |
9
|
ineq2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( le ‘ 𝐾 ) ∩ ( ( 𝐵 × 𝐵 ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
11 |
5 10
|
syl5eq |
⊢ ( 𝐴 ⊆ 𝐵 → ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) ) |