Step |
Hyp |
Ref |
Expression |
1 |
|
indthinc.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
2 |
|
prsthinc.h |
⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
3 |
|
prsthinc.o |
⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) |
4 |
|
prsthinc.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) |
5 |
|
prsthinc.p |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
7 |
6
|
f1omo |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
8 |
|
df-ov |
⊢ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) = ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) |
9 |
8
|
eleq2i |
⊢ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
10 |
9
|
mobii |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
11 |
7 10
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) |
12 |
|
biid |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) |
13 |
|
0lt1o |
⊢ ∅ ∈ 1o |
14 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) |
17 |
15 16
|
prsref |
⊢ ( ( 𝐶 ∈ Proset ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
18 |
5 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
19 |
14 18
|
sylbida |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
20 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑦 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) ) |
21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) → 𝑦 ≤ 𝑦 ) |
22 |
19 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≤ 𝑦 ) |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
24 |
|
1oex |
⊢ 1o ∈ V |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ∈ V ) |
26 |
|
1n0 |
⊢ 1o ≠ ∅ |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ≠ ∅ ) |
28 |
23 25 27
|
fvconstr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑦 ↔ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) ) |
29 |
22 28
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) |
30 |
13 29
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) ) |
31 |
|
0ov |
⊢ ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) = ∅ |
32 |
31
|
oveqi |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ( 𝑔 ∅ 𝑓 ) |
33 |
|
0ov |
⊢ ( 𝑔 ∅ 𝑓 ) = ∅ |
34 |
32 33
|
eqtri |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ |
35 |
34 13
|
eqeltri |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ 1o |
36 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝜑 ) |
37 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝐶 ∈ Proset ) |
38 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
39 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
40 |
38 14 39
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ) |
41 |
40
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
44 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) |
45 |
43 44
|
fvconstr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑦 ) |
46 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
47 |
46
|
biimpd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
48 |
36 45 47
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) |
49 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) |
50 |
43 49
|
fvconstr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ≤ 𝑧 ) |
51 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
52 |
51
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
53 |
36 50 52
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) |
54 |
15 16
|
prstr |
⊢ ( ( 𝐶 ∈ Proset ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
55 |
37 42 48 53 54
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
56 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑧 ) ) |
57 |
56
|
biimprd |
⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐶 ) 𝑧 → 𝑥 ≤ 𝑧 ) ) |
58 |
36 55 57
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑧 ) |
59 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ∈ V ) |
60 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ≠ ∅ ) |
61 |
43 59 60
|
fvconstr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ≤ 𝑧 ↔ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) ) |
62 |
58 61
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) |
63 |
35 62
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) ) |
64 |
1 2 11 3 5 12 30 63
|
isthincd2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |