| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indthinc.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐶 ) ) | 
						
							| 2 |  | prsthinc.h | ⊢ ( 𝜑  →  (  ≤   ×  { 1o } )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 3 |  | prsthinc.o | ⊢ ( 𝜑  →  ∅  =  ( comp ‘ 𝐶 ) ) | 
						
							| 4 |  | prsthinc.l | ⊢ ( 𝜑  →   ≤   =  ( le ‘ 𝐶 ) ) | 
						
							| 5 |  | prsthinc.p | ⊢ ( 𝜑  →  𝐶  ∈   Proset  ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  (  ≤   ×  { 1o } )  =  (  ≤   ×  { 1o } ) ) | 
						
							| 7 | 6 | f1omo | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃* 𝑓 𝑓  ∈  ( (  ≤   ×  { 1o } ) ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 8 |  | df-ov | ⊢ ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  =  ( (  ≤   ×  { 1o } ) ‘ 〈 𝑥 ,  𝑦 〉 ) | 
						
							| 9 | 8 | eleq2i | ⊢ ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ↔  𝑓  ∈  ( (  ≤   ×  { 1o } ) ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 10 | 9 | mobii | ⊢ ( ∃* 𝑓 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ↔  ∃* 𝑓 𝑓  ∈  ( (  ≤   ×  { 1o } ) ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 11 | 7 10 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃* 𝑓 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 ) ) | 
						
							| 12 |  | biid | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) ) | 
						
							| 13 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 14 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ ( le ‘ 𝐶 )  =  ( le ‘ 𝐶 ) | 
						
							| 17 | 15 16 | prsref | ⊢ ( ( 𝐶  ∈   Proset   ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  →  𝑦 ( le ‘ 𝐶 ) 𝑦 ) | 
						
							| 18 | 5 17 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  →  𝑦 ( le ‘ 𝐶 ) 𝑦 ) | 
						
							| 19 | 14 18 | sylbida | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦 ( le ‘ 𝐶 ) 𝑦 ) | 
						
							| 20 | 4 | breqd | ⊢ ( 𝜑  →  ( 𝑦  ≤  𝑦  ↔  𝑦 ( le ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 21 | 20 | biimpar | ⊢ ( ( 𝜑  ∧  𝑦 ( le ‘ 𝐶 ) 𝑦 )  →  𝑦  ≤  𝑦 ) | 
						
							| 22 | 19 21 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  ≤  𝑦 ) | 
						
							| 23 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  (  ≤   ×  { 1o } )  =  (  ≤   ×  { 1o } ) ) | 
						
							| 24 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  1o  ∈  V ) | 
						
							| 26 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  1o  ≠  ∅ ) | 
						
							| 28 | 23 25 27 | fvconstr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ≤  𝑦  ↔  ( 𝑦 (  ≤   ×  { 1o } ) 𝑦 )  =  1o ) ) | 
						
							| 29 | 22 28 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦 (  ≤   ×  { 1o } ) 𝑦 )  =  1o ) | 
						
							| 30 | 13 29 | eleqtrrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ∅  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑦 ) ) | 
						
							| 31 |  | 0ov | ⊢ ( 〈 𝑥 ,  𝑦 〉 ∅ 𝑧 )  =  ∅ | 
						
							| 32 | 31 | oveqi | ⊢ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ∅ 𝑧 ) 𝑓 )  =  ( 𝑔 ∅ 𝑓 ) | 
						
							| 33 |  | 0ov | ⊢ ( 𝑔 ∅ 𝑓 )  =  ∅ | 
						
							| 34 | 32 33 | eqtri | ⊢ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ∅ 𝑧 ) 𝑓 )  =  ∅ | 
						
							| 35 | 34 13 | eqeltri | ⊢ ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ∅ 𝑧 ) 𝑓 )  ∈  1o | 
						
							| 36 |  | simpl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝜑 ) | 
						
							| 37 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝐶  ∈   Proset  ) | 
						
							| 38 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 39 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  ↔  𝑧  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 40 | 38 14 39 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 41 | 40 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 42 | 41 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 43 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  (  ≤   ×  { 1o } )  =  (  ≤   ×  { 1o } ) ) | 
						
							| 44 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 ) ) | 
						
							| 45 | 43 44 | fvconstr2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑥  ≤  𝑦 ) | 
						
							| 46 | 4 | breqd | ⊢ ( 𝜑  →  ( 𝑥  ≤  𝑦  ↔  𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 47 | 46 | biimpd | ⊢ ( 𝜑  →  ( 𝑥  ≤  𝑦  →  𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 48 | 36 45 47 | sylc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑥 ( le ‘ 𝐶 ) 𝑦 ) | 
						
							| 49 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) | 
						
							| 50 | 43 49 | fvconstr2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑦  ≤  𝑧 ) | 
						
							| 51 | 4 | breqd | ⊢ ( 𝜑  →  ( 𝑦  ≤  𝑧  ↔  𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 52 | 51 | biimpd | ⊢ ( 𝜑  →  ( 𝑦  ≤  𝑧  →  𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 53 | 36 50 52 | sylc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑦 ( le ‘ 𝐶 ) 𝑧 ) | 
						
							| 54 | 15 16 | prstr | ⊢ ( ( 𝐶  ∈   Proset   ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) )  ∧  ( 𝑥 ( le ‘ 𝐶 ) 𝑦  ∧  𝑦 ( le ‘ 𝐶 ) 𝑧 ) )  →  𝑥 ( le ‘ 𝐶 ) 𝑧 ) | 
						
							| 55 | 37 42 48 53 54 | syl112anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑥 ( le ‘ 𝐶 ) 𝑧 ) | 
						
							| 56 | 4 | breqd | ⊢ ( 𝜑  →  ( 𝑥  ≤  𝑧  ↔  𝑥 ( le ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 57 | 56 | biimprd | ⊢ ( 𝜑  →  ( 𝑥 ( le ‘ 𝐶 ) 𝑧  →  𝑥  ≤  𝑧 ) ) | 
						
							| 58 | 36 55 57 | sylc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  𝑥  ≤  𝑧 ) | 
						
							| 59 | 24 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  1o  ∈  V ) | 
						
							| 60 | 26 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  1o  ≠  ∅ ) | 
						
							| 61 | 43 59 60 | fvconstr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  ( 𝑥  ≤  𝑧  ↔  ( 𝑥 (  ≤   ×  { 1o } ) 𝑧 )  =  1o ) ) | 
						
							| 62 | 58 61 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  ( 𝑥 (  ≤   ×  { 1o } ) 𝑧 )  =  1o ) | 
						
							| 63 | 35 62 | eleqtrrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 (  ≤   ×  { 1o } ) 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ∅ 𝑧 ) 𝑓 )  ∈  ( 𝑥 (  ≤   ×  { 1o } ) 𝑧 ) ) | 
						
							| 64 | 1 2 11 3 5 12 30 63 | isthincd2 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ThinCat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑦  ∈  𝐵  ↦  ∅ ) ) ) |