Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
Assertion | prtlem19 | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
2 | 1 | prtlem18 | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤 ) ) ) |
3 | 2 | imp | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤 ) ) |
4 | vex | ⊢ 𝑤 ∈ V | |
5 | vex | ⊢ 𝑧 ∈ V | |
6 | 4 5 | elec | ⊢ ( 𝑤 ∈ [ 𝑧 ] ∼ ↔ 𝑧 ∼ 𝑤 ) |
7 | 3 6 | bitr4di | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [ 𝑧 ] ∼ ) ) |
8 | 7 | eqrdv | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 = [ 𝑧 ] ∼ ) |
9 | 8 | ex | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |