Metamath Proof Explorer


Theorem prtlem19

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
Assertion prtlem19 ( Prt 𝐴 → ( ( 𝑣𝐴𝑧𝑣 ) → 𝑣 = [ 𝑧 ] ) )

Proof

Step Hyp Ref Expression
1 prtlem18.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
2 1 prtlem18 ( Prt 𝐴 → ( ( 𝑣𝐴𝑧𝑣 ) → ( 𝑤𝑣𝑧 𝑤 ) ) )
3 2 imp ( ( Prt 𝐴 ∧ ( 𝑣𝐴𝑧𝑣 ) ) → ( 𝑤𝑣𝑧 𝑤 ) )
4 vex 𝑤 ∈ V
5 vex 𝑧 ∈ V
6 4 5 elec ( 𝑤 ∈ [ 𝑧 ] 𝑧 𝑤 )
7 3 6 bitr4di ( ( Prt 𝐴 ∧ ( 𝑣𝐴𝑧𝑣 ) ) → ( 𝑤𝑣𝑤 ∈ [ 𝑧 ] ) )
8 7 eqrdv ( ( Prt 𝐴 ∧ ( 𝑣𝐴𝑧𝑣 ) ) → 𝑣 = [ 𝑧 ] )
9 8 ex ( Prt 𝐴 → ( ( 𝑣𝐴𝑧𝑣 ) → 𝑣 = [ 𝑧 ] ) )