Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
2 |
|
xrleloe |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
4 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
5 |
4
|
uneq2i |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ ( { 𝐴 } ∪ { 𝐵 } ) ) |
6 |
|
unass |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ ( { 𝐴 } ∪ { 𝐵 } ) ) |
7 |
5 6
|
eqtr4i |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) |
8 |
|
uncom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) |
9 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
10 |
8 9
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
11 |
10
|
uneq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
12 |
7 11
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
14 |
13
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
15 |
|
snunico |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
17 |
14 16
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
19 |
|
iccid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → { 𝐴 } = ( 𝐴 [,] 𝐴 ) ) |
22 |
|
uncom |
⊢ ( ∅ ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ∅ ) |
23 |
|
un0 |
⊢ ( { 𝐴 } ∪ ∅ ) = { 𝐴 } |
24 |
22 23
|
eqtri |
⊢ ( ∅ ∪ { 𝐴 } ) = { 𝐴 } |
25 |
|
iooid |
⊢ ( 𝐴 (,) 𝐴 ) = ∅ |
26 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐴 ) = ( 𝐴 (,) 𝐵 ) ) |
27 |
25 26
|
eqtr3id |
⊢ ( 𝐴 = 𝐵 → ∅ = ( 𝐴 (,) 𝐵 ) ) |
28 |
|
dfsn2 |
⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
29 |
|
preq2 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) |
30 |
28 29
|
eqtrid |
⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐴 , 𝐵 } ) |
31 |
27 30
|
uneq12d |
⊢ ( 𝐴 = 𝐵 → ( ∅ ∪ { 𝐴 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
32 |
24 31
|
eqtr3id |
⊢ ( 𝐴 = 𝐵 → { 𝐴 } = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
33 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 [,] 𝐴 ) = ( 𝐴 [,] 𝐵 ) ) |
34 |
32 33
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( { 𝐴 } = ( 𝐴 [,] 𝐴 ) ↔ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
35 |
21 34
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
36 |
18 35
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
37 |
3 36
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
38 |
1 37
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |