| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sate0 | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ∅  Sat∈  𝑈 )  =  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) ) | 
						
							| 2 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 3 | 2 | n0ii | ⊢ ¬  ω  =  ∅ | 
						
							| 4 | 3 | intnan | ⊢ ¬  ( 𝑥  =  ∅  ∧  ω  =  ∅ ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ¬  ( 𝑥  =  ∅  ∧  ω  =  ∅ ) ) | 
						
							| 6 |  | f00 | ⊢ ( 𝑥 : ω ⟶ ∅  ↔  ( 𝑥  =  ∅  ∧  ω  =  ∅ ) ) | 
						
							| 7 | 5 6 | sylnibr | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ¬  𝑥 : ω ⟶ ∅ ) | 
						
							| 8 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 9 | 8 8 | pm3.2i | ⊢ ( ∅  ∈  V  ∧  ∅  ∈  V ) | 
						
							| 10 |  | satfvel | ⊢ ( ( ( ∅  ∈  V  ∧  ∅  ∈  V )  ∧  𝑈  ∈  ( Fmla ‘ ω )  ∧  𝑥  ∈  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) )  →  𝑥 : ω ⟶ ∅ ) | 
						
							| 11 | 9 10 | mp3an1 | ⊢ ( ( 𝑈  ∈  ( Fmla ‘ ω )  ∧  𝑥  ∈  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) )  →  𝑥 : ω ⟶ ∅ ) | 
						
							| 12 | 7 11 | mtand | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ¬  𝑥  ∈  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) ) | 
						
							| 13 | 12 | alrimiv | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ∀ 𝑥 ¬  𝑥  ∈  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) ) | 
						
							| 14 |  | eq0 | ⊢ ( ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 )  =  ∅  ↔  ∀ 𝑥 ¬  𝑥  ∈  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ( ( ∅  Sat  ∅ ) ‘ ω ) ‘ 𝑈 )  =  ∅ ) | 
						
							| 16 | 1 15 | eqtrd | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ∅  Sat∈  𝑈 )  =  ∅ ) | 
						
							| 17 |  | prv | ⊢ ( ( ∅  ∈  V  ∧  𝑈  ∈  ( Fmla ‘ ω ) )  →  ( ∅ ⊧ 𝑈  ↔  ( ∅  Sat∈  𝑈 )  =  ( ∅  ↑m  ω ) ) ) | 
						
							| 18 | 8 17 | mpan | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ∅ ⊧ 𝑈  ↔  ( ∅  Sat∈  𝑈 )  =  ( ∅  ↑m  ω ) ) ) | 
						
							| 19 | 2 | ne0ii | ⊢ ω  ≠  ∅ | 
						
							| 20 |  | map0b | ⊢ ( ω  ≠  ∅  →  ( ∅  ↑m  ω )  =  ∅ ) | 
						
							| 21 | 19 20 | mp1i | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ∅  ↑m  ω )  =  ∅ ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ( ∅  Sat∈  𝑈 )  =  ( ∅  ↑m  ω )  ↔  ( ∅  Sat∈  𝑈 )  =  ∅ ) ) | 
						
							| 23 | 18 22 | bitrd | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ( ∅ ⊧ 𝑈  ↔  ( ∅  Sat∈  𝑈 )  =  ∅ ) ) | 
						
							| 24 | 16 23 | mpbird | ⊢ ( 𝑈  ∈  ( Fmla ‘ ω )  →  ∅ ⊧ 𝑈 ) |