| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ω  ×  { 𝑋 } )  =  ( ω  ×  { 𝑋 } ) | 
						
							| 2 |  | omex | ⊢ ω  ∈  V | 
						
							| 3 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 4 | 2 3 | xpex | ⊢ ( ω  ×  { 𝑋 } )  ∈  V | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑎  =  ( ω  ×  { 𝑋 } )  →  ( 𝑎  =  ( ω  ×  { 𝑋 } )  ↔  ( ω  ×  { 𝑋 } )  =  ( ω  ×  { 𝑋 } ) ) ) | 
						
							| 6 | 4 5 | spcev | ⊢ ( ( ω  ×  { 𝑋 } )  =  ( ω  ×  { 𝑋 } )  →  ∃ 𝑎 𝑎  =  ( ω  ×  { 𝑋 } ) ) | 
						
							| 7 | 1 6 | mp1i | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ∃ 𝑎 𝑎  =  ( ω  ×  { 𝑋 } ) ) | 
						
							| 8 | 3 2 | pm3.2i | ⊢ ( { 𝑋 }  ∈  V  ∧  ω  ∈  V ) | 
						
							| 9 |  | elmapg | ⊢ ( ( { 𝑋 }  ∈  V  ∧  ω  ∈  V )  →  ( 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ↔  𝑎 : ω ⟶ { 𝑋 } ) ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ↔  𝑎 : ω ⟶ { 𝑋 } ) ) | 
						
							| 11 |  | fconst2g | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑎 : ω ⟶ { 𝑋 }  ↔  𝑎  =  ( ω  ×  { 𝑋 } ) ) ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( 𝑎 : ω ⟶ { 𝑋 }  ↔  𝑎  =  ( ω  ×  { 𝑋 } ) ) ) | 
						
							| 13 | 10 12 | bitrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ↔  𝑎  =  ( ω  ×  { 𝑋 } ) ) ) | 
						
							| 14 | 13 | exbidv | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( ∃ 𝑎 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ↔  ∃ 𝑎 𝑎  =  ( ω  ×  { 𝑋 } ) ) ) | 
						
							| 15 | 7 14 | mpbird | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ∃ 𝑎 𝑎  ∈  ( { 𝑋 }  ↑m  ω ) ) | 
						
							| 16 |  | neq0 | ⊢ ( ¬  ( { 𝑋 }  ↑m  ω )  =  ∅  ↔  ∃ 𝑎 𝑎  ∈  ( { 𝑋 }  ↑m  ω ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ¬  ( { 𝑋 }  ↑m  ω )  =  ∅ ) | 
						
							| 18 |  | eqcom | ⊢ ( ( { 𝑋 }  ↑m  ω )  =  ∅  ↔  ∅  =  ( { 𝑋 }  ↑m  ω ) ) | 
						
							| 19 | 17 18 | sylnib | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ¬  ∅  =  ( { 𝑋 }  ↑m  ω ) ) | 
						
							| 20 |  | ovex | ⊢ ( 𝐼 ∈𝑔 𝐽 )  ∈  V | 
						
							| 21 | 3 20 | pm3.2i | ⊢ ( { 𝑋 }  ∈  V  ∧  ( 𝐼 ∈𝑔 𝐽 )  ∈  V ) | 
						
							| 22 |  | prv | ⊢ ( ( { 𝑋 }  ∈  V  ∧  ( 𝐼 ∈𝑔 𝐽 )  ∈  V )  →  ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 )  ↔  ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  ( { 𝑋 }  ↑m  ω ) ) ) | 
						
							| 23 | 21 22 | mp1i | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 )  ↔  ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  ( { 𝑋 }  ↑m  ω ) ) ) | 
						
							| 24 |  | goel | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝐼 ∈𝑔 𝐽 )  =  〈 ∅ ,  〈 𝐼 ,  𝐽 〉 〉 ) | 
						
							| 25 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 26 | 25 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ∅  ∈  { ∅ } ) | 
						
							| 28 |  | opelxpi | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  〈 𝐼 ,  𝐽 〉  ∈  ( ω  ×  ω ) ) | 
						
							| 29 | 27 28 | opelxpd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  〈 ∅ ,  〈 𝐼 ,  𝐽 〉 〉  ∈  ( { ∅ }  ×  ( ω  ×  ω ) ) ) | 
						
							| 30 | 24 29 | eqeltrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝐼 ∈𝑔 𝐽 )  ∈  ( { ∅ }  ×  ( ω  ×  ω ) ) ) | 
						
							| 31 |  | fmla0xp | ⊢ ( Fmla ‘ ∅ )  =  ( { ∅ }  ×  ( ω  ×  ω ) ) | 
						
							| 32 | 30 31 | eleqtrrdi | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝐼 ∈𝑔 𝐽 )  ∈  ( Fmla ‘ ∅ ) ) | 
						
							| 33 | 32 | 3adant3 | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( 𝐼 ∈𝑔 𝐽 )  ∈  ( Fmla ‘ ∅ ) ) | 
						
							| 34 |  | satefvfmla0 | ⊢ ( ( { 𝑋 }  ∈  V  ∧  ( 𝐼 ∈𝑔 𝐽 )  ∈  ( Fmla ‘ ∅ ) )  →  ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } ) | 
						
							| 35 | 3 33 34 | sylancr | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) } ) | 
						
							| 36 | 24 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) )  =  ( 2nd  ‘ 〈 ∅ ,  〈 𝐼 ,  𝐽 〉 〉 ) ) | 
						
							| 37 |  | opex | ⊢ 〈 𝐼 ,  𝐽 〉  ∈  V | 
						
							| 38 | 25 37 | op2nd | ⊢ ( 2nd  ‘ 〈 ∅ ,  〈 𝐼 ,  𝐽 〉 〉 )  =  〈 𝐼 ,  𝐽 〉 | 
						
							| 39 | 36 38 | eqtrdi | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) )  =  〈 𝐼 ,  𝐽 〉 ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) )  =  ( 1st  ‘ 〈 𝐼 ,  𝐽 〉 ) ) | 
						
							| 41 |  | op1stg | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 1st  ‘ 〈 𝐼 ,  𝐽 〉 )  =  𝐼 ) | 
						
							| 42 | 40 41 | eqtrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) )  =  𝐼 ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  =  ( 𝑎 ‘ 𝐼 ) ) | 
						
							| 44 | 39 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) )  =  ( 2nd  ‘ 〈 𝐼 ,  𝐽 〉 ) ) | 
						
							| 45 |  | op2ndg | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 2nd  ‘ 〈 𝐼 ,  𝐽 〉 )  =  𝐽 ) | 
						
							| 46 | 44 45 | eqtrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) )  =  𝐽 ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  =  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 48 | 43 47 | eleq12d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ↔  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 49 | 48 | rabbidv | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) }  =  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) } ) | 
						
							| 50 | 49 | 3adant3 | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) }  =  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) } ) | 
						
							| 51 |  | elmapi | ⊢ ( 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  →  𝑎 : ω ⟶ { 𝑋 } ) | 
						
							| 52 |  | elirr | ⊢ ¬  𝑋  ∈  𝑋 | 
						
							| 53 |  | fvconst | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  𝐼  ∈  ω )  →  ( 𝑎 ‘ 𝐼 )  =  𝑋 ) | 
						
							| 54 | 53 | 3ad2antr1 | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑎 ‘ 𝐼 )  =  𝑋 ) | 
						
							| 55 |  | fvconst | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  𝐽  ∈  ω )  →  ( 𝑎 ‘ 𝐽 )  =  𝑋 ) | 
						
							| 56 | 55 | 3ad2antr2 | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑎 ‘ 𝐽 )  =  𝑋 ) | 
						
							| 57 | 54 56 | eleq12d | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 )  ↔  𝑋  ∈  𝑋 ) ) | 
						
							| 58 | 52 57 | mtbiri | ⊢ ( ( 𝑎 : ω ⟶ { 𝑋 }  ∧  ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 ) )  →  ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝑎 : ω ⟶ { 𝑋 }  →  ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 60 | 51 59 | syl | ⊢ ( 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  →  ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  ∧  𝑎  ∈  ( { 𝑋 }  ↑m  ω ) )  →  ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 62 | 61 | ralrimiva | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ∀ 𝑎  ∈  ( { 𝑋 }  ↑m  ω ) ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 63 |  | rabeq0 | ⊢ ( { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) }  =  ∅  ↔  ∀ 𝑎  ∈  ( { 𝑋 }  ↑m  ω ) ¬  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) ) | 
						
							| 64 | 62 63 | sylibr | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ 𝐼 )  ∈  ( 𝑎 ‘ 𝐽 ) }  =  ∅ ) | 
						
							| 65 | 50 64 | eqtrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  { 𝑎  ∈  ( { 𝑋 }  ↑m  ω )  ∣  ( 𝑎 ‘ ( 1st  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) )  ∈  ( 𝑎 ‘ ( 2nd  ‘ ( 2nd  ‘ ( 𝐼 ∈𝑔 𝐽 ) ) ) ) }  =  ∅ ) | 
						
							| 66 | 35 65 | eqtrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  ∅ ) | 
						
							| 67 | 66 | eqeq1d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( ( { 𝑋 }  Sat∈  ( 𝐼 ∈𝑔 𝐽 ) )  =  ( { 𝑋 }  ↑m  ω )  ↔  ∅  =  ( { 𝑋 }  ↑m  ω ) ) ) | 
						
							| 68 | 23 67 | bitrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 )  ↔  ∅  =  ( { 𝑋 }  ↑m  ω ) ) ) | 
						
							| 69 | 19 68 | mtbird | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝑋  ∈  𝑉 )  →  ¬  { 𝑋 } ⊧ ( 𝐼 ∈𝑔 𝐽 ) ) |