Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
2 |
|
snwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
3 |
|
snwf |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |
4 |
|
unwf |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) |
5 |
4
|
biimpi |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) |
6 |
2 3 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) |
7 |
1 6
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |