| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pr | ⊢ { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) | 
						
							| 2 |  | snwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 3 |  | snwf | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 4 |  | unwf | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  ↔  ( { 𝐴 }  ∪  { 𝐵 } )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( { 𝐴 }  ∪  { 𝐵 } )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 6 | 2 3 5 | syl2an | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( { 𝐴 }  ∪  { 𝐵 } )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  { 𝐴 ,  𝐵 }  ∈  ∪  ( 𝑅1  “  On ) ) |