Metamath Proof Explorer


Theorem psasym

Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008)

Ref Expression
Assertion psasym ( ( 𝑅 ∈ PosetRel ∧ 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 pslem ( 𝑅 ∈ PosetRel → ( ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 𝑅 𝐴 ) ∧ ( 𝐴 𝑅𝐴 𝑅 𝐴 ) ∧ ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) )
2 1 simp3d ( 𝑅 ∈ PosetRel → ( ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) )
3 2 3impib ( ( 𝑅 ∈ PosetRel ∧ 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 )