Metamath Proof Explorer


Theorem psdadd

Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025)

Ref Expression
Hypotheses psdadd.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdadd.b 𝐵 = ( Base ‘ 𝑆 )
psdadd.p + = ( +g𝑆 )
psdadd.i ( 𝜑𝐼𝑉 )
psdadd.r ( 𝜑𝑅 ∈ CMnd )
psdadd.x ( 𝜑𝑋𝐼 )
psdadd.f ( 𝜑𝐹𝐵 )
psdadd.g ( 𝜑𝐺𝐵 )
Assertion psdadd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 + 𝐺 ) ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) + ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 psdadd.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdadd.b 𝐵 = ( Base ‘ 𝑆 )
3 psdadd.p + = ( +g𝑆 )
4 psdadd.i ( 𝜑𝐼𝑉 )
5 psdadd.r ( 𝜑𝑅 ∈ CMnd )
6 psdadd.x ( 𝜑𝑋𝐼 )
7 psdadd.f ( 𝜑𝐹𝐵 )
8 psdadd.g ( 𝜑𝐺𝐵 )
9 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
10 1 2 9 4 5 6 7 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
11 1 2 9 4 5 6 8 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) = ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
12 10 11 oveq12d ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∘f ( +g𝑅 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) = ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∘f ( +g𝑅 ) ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) )
13 ovex ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ V
14 eqid ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
15 13 14 fnmpti ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
16 15 a1i ( 𝜑 → ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
17 ovex ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ V
18 eqid ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
19 17 18 fnmpti ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
20 19 a1i ( 𝜑 → ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
21 ovex ( ℕ0m 𝐼 ) ∈ V
22 21 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
23 22 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
24 inidm ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∩ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
25 fveq1 ( 𝑏 = 𝑑 → ( 𝑏𝑋 ) = ( 𝑑𝑋 ) )
26 25 oveq1d ( 𝑏 = 𝑑 → ( ( 𝑏𝑋 ) + 1 ) = ( ( 𝑑𝑋 ) + 1 ) )
27 fvoveq1 ( 𝑏 = 𝑑 → ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
28 26 27 oveq12d ( 𝑏 = 𝑑 → ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
29 simpr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
30 ovexd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ V )
31 14 28 29 30 fvmptd3 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ‘ 𝑑 ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
32 fvoveq1 ( 𝑏 = 𝑑 → ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
33 26 32 oveq12d ( 𝑏 = 𝑑 → ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
34 ovexd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ V )
35 18 33 29 34 fvmptd3 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ‘ 𝑑 ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
36 16 20 23 23 24 31 35 offval ( 𝜑 → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∘f ( +g𝑅 ) ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑏𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑏f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ( +g𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) )
37 eqid ( +g𝑅 ) = ( +g𝑅 )
38 1 2 37 3 7 8 psradd ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹f ( +g𝑅 ) 𝐺 ) )
39 38 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 + 𝐺 ) = ( 𝐹f ( +g𝑅 ) 𝐺 ) )
40 39 fveq1d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
41 9 psrbagsn ( 𝐼𝑉 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
42 4 41 syl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
43 42 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
44 9 psrbagaddcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
45 29 43 44 syl2anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
46 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
47 1 46 9 2 7 psrelbas ( 𝜑𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
48 47 ffnd ( 𝜑𝐹 Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
49 1 46 9 2 8 psrelbas ( 𝜑𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
50 49 ffnd ( 𝜑𝐺 Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
51 eqidd ( ( 𝜑 ∧ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
52 eqidd ( ( 𝜑 ∧ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
53 48 50 23 23 24 51 52 ofval ( ( 𝜑 ∧ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
54 45 53 syldan ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
55 40 54 eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
56 55 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
57 5 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd )
58 9 psrbagf ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 )
59 58 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
60 6 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
61 59 60 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
62 peano2nn0 ( ( 𝑑𝑋 ) ∈ ℕ0 → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
63 61 62 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
64 7 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹𝐵 )
65 1 46 9 2 64 psrelbas ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
66 65 45 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
67 49 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
68 67 45 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
69 eqid ( .g𝑅 ) = ( .g𝑅 )
70 46 69 37 mulgnn0di ( ( 𝑅 ∈ CMnd ∧ ( ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ( +g𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
71 57 63 66 68 70 syl13anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( +g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ( +g𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
72 56 71 eqtr2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ( +g𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
73 72 mpteq2dva ( 𝜑 → ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ( +g𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
74 12 36 73 3eqtrd ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∘f ( +g𝑅 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
75 5 cmnmndd ( 𝜑𝑅 ∈ Mnd )
76 mndmgm ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm )
77 75 76 syl ( 𝜑𝑅 ∈ Mgm )
78 1 2 4 77 6 7 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )
79 1 2 4 77 6 8 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 )
80 1 2 37 3 78 79 psradd ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) + ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∘f ( +g𝑅 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) )
81 1 2 3 77 7 8 psraddcl ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 )
82 1 2 9 4 5 6 81 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 + 𝐺 ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 + 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
83 74 80 82 3eqtr4rd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 + 𝐺 ) ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) + ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) )