Step |
Hyp |
Ref |
Expression |
1 |
|
psdascl.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psdascl.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
3 |
|
psdascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑆 ) |
4 |
|
psdascl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
psdascl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
psdascl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
psdascl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
8 |
|
psdascl.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
9 |
1 5 6
|
psrsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
11 |
4 10
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
12 |
8 11
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
13 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
17 |
3 13 14 15 16
|
asclval |
⊢ ( 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) → ( 𝐴 ‘ 𝐶 ) = ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
18 |
12 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) = ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴 ‘ 𝐶 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
21 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
22 |
1 5 21
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
23 |
20 16
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
25 |
1 20 15 4 5 6 7 24 8
|
psdvsca |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) = ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) ) ) |
26 |
1 16 2 5 6 7
|
psd1 |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) = 0 ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) ) = ( 𝐶 ( ·𝑠 ‘ 𝑆 ) 0 ) ) |
28 |
1 5 21
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
29 |
13 15 14 2
|
lmodvs0 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( 𝐶 ( ·𝑠 ‘ 𝑆 ) 0 ) = 0 ) |
30 |
28 12 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ( ·𝑠 ‘ 𝑆 ) 0 ) = 0 ) |
31 |
27 30
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ( ·𝑠 ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) ) = 0 ) |
32 |
19 25 31
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴 ‘ 𝐶 ) ) = 0 ) |