Metamath Proof Explorer


Theorem psdascl

Description: The derivative of a constant polynomial is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psdascl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdascl.z 0 = ( 0g𝑆 )
psdascl.a 𝐴 = ( algSc ‘ 𝑆 )
psdascl.b 𝐵 = ( Base ‘ 𝑅 )
psdascl.i ( 𝜑𝐼𝑉 )
psdascl.r ( 𝜑𝑅 ∈ CRing )
psdascl.x ( 𝜑𝑋𝐼 )
psdascl.c ( 𝜑𝐶𝐵 )
Assertion psdascl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴𝐶 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 psdascl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdascl.z 0 = ( 0g𝑆 )
3 psdascl.a 𝐴 = ( algSc ‘ 𝑆 )
4 psdascl.b 𝐵 = ( Base ‘ 𝑅 )
5 psdascl.i ( 𝜑𝐼𝑉 )
6 psdascl.r ( 𝜑𝑅 ∈ CRing )
7 psdascl.x ( 𝜑𝑋𝐼 )
8 psdascl.c ( 𝜑𝐶𝐵 )
9 1 5 6 psrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑆 ) )
10 9 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
11 4 10 eqtrid ( 𝜑𝐵 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
12 8 11 eleqtrd ( 𝜑𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
13 eqid ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 )
14 eqid ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) )
15 eqid ( ·𝑠𝑆 ) = ( ·𝑠𝑆 )
16 eqid ( 1r𝑆 ) = ( 1r𝑆 )
17 3 13 14 15 16 asclval ( 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) → ( 𝐴𝐶 ) = ( 𝐶 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) )
18 12 17 syl ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐶 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) )
19 18 fveq2d ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴𝐶 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) ) )
20 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
21 6 crngringd ( 𝜑𝑅 ∈ Ring )
22 1 5 21 psrring ( 𝜑𝑆 ∈ Ring )
23 20 16 ringidcl ( 𝑆 ∈ Ring → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
24 22 23 syl ( 𝜑 → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
25 1 20 15 4 5 6 7 24 8 psdvsca ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) ) = ( 𝐶 ( ·𝑠𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r𝑆 ) ) ) )
26 1 16 2 5 6 7 psd1 ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r𝑆 ) ) = 0 )
27 26 oveq2d ( 𝜑 → ( 𝐶 ( ·𝑠𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r𝑆 ) ) ) = ( 𝐶 ( ·𝑠𝑆 ) 0 ) )
28 1 5 21 psrlmod ( 𝜑𝑆 ∈ LMod )
29 13 15 14 2 lmodvs0 ( ( 𝑆 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( 𝐶 ( ·𝑠𝑆 ) 0 ) = 0 )
30 28 12 29 syl2anc ( 𝜑 → ( 𝐶 ( ·𝑠𝑆 ) 0 ) = 0 )
31 27 30 eqtrd ( 𝜑 → ( 𝐶 ( ·𝑠𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1r𝑆 ) ) ) = 0 )
32 19 25 31 3eqtrd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴𝐶 ) ) = 0 )