Metamath Proof Explorer


Theorem psdcl

Description: The derivative of a power series is a power series. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdcl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdcl.b 𝐵 = ( Base ‘ 𝑆 )
psdcl.i ( 𝜑𝐼𝑉 )
psdcl.r ( 𝜑𝑅 ∈ Mgm )
psdcl.x ( 𝜑𝑋𝐼 )
psdcl.f ( 𝜑𝐹𝐵 )
Assertion psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 psdcl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdcl.b 𝐵 = ( Base ‘ 𝑆 )
3 psdcl.i ( 𝜑𝐼𝑉 )
4 psdcl.r ( 𝜑𝑅 ∈ Mgm )
5 psdcl.x ( 𝜑𝑋𝐼 )
6 psdcl.f ( 𝜑𝐹𝐵 )
7 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
8 ovex ( ℕ0m 𝐼 ) ∈ V
9 8 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
10 9 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
11 4 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Mgm )
12 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
13 12 psrbagf ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 )
14 13 adantl ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
15 5 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
16 14 15 ffvelcdmd ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘𝑋 ) ∈ ℕ0 )
17 nn0p1nn ( ( 𝑘𝑋 ) ∈ ℕ0 → ( ( 𝑘𝑋 ) + 1 ) ∈ ℕ )
18 16 17 syl ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑘𝑋 ) + 1 ) ∈ ℕ )
19 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
20 1 19 12 2 6 psrelbas ( 𝜑𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
21 20 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
22 simpr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
23 1nn0 1 ∈ ℕ0
24 12 snifpsrbag ( ( 𝐼𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
25 3 23 24 sylancl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
26 25 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
27 12 psrbagaddcl ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
28 22 26 27 syl2anc ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
29 21 28 ffvelcdmd ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
30 eqid ( .g𝑅 ) = ( .g𝑅 )
31 19 30 mulgnncl ( ( 𝑅 ∈ Mgm ∧ ( ( 𝑘𝑋 ) + 1 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
32 11 18 29 31 syl3anc ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
33 32 fmpttd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
34 7 10 33 elmapdd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) )
35 1 2 12 3 4 5 6 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
36 1 19 12 2 3 psrbas ( 𝜑𝐵 = ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) )
37 34 35 36 3eltr4d ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )