Step |
Hyp |
Ref |
Expression |
1 |
|
psdffval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psdffval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psdffval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
4 |
|
psdffval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
psdffval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
6 |
|
df-psd |
⊢ mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑖 = 𝐼 ) |
9 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) = ( 𝐼 mPwSer 𝑅 ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) = 𝑆 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) = ( Base ‘ 𝑆 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) = 𝐵 ) |
13 |
8
|
oveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
14 |
13
|
rabeqdv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
15 |
14 3
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
16 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .g ‘ 𝑟 ) = ( .g ‘ 𝑅 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( .g ‘ 𝑟 ) = ( .g ‘ 𝑅 ) ) |
18 |
|
eqidd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝑘 ‘ 𝑥 ) + 1 ) = ( ( 𝑘 ‘ 𝑥 ) + 1 ) ) |
19 |
8
|
mpteq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) = ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) = ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) |
22 |
17 18 21
|
oveq123d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) |
23 |
15 22
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) |
24 |
12 23
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑓 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) |
25 |
8 24
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |
27 |
4
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
28 |
5
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
29 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ∈ V ) |
30 |
7 26 27 28 29
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 mPSDer 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |