Step |
Hyp |
Ref |
Expression |
1 |
|
psdmplcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
psdmplcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
psdmplcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
psdmplcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
5 |
|
psdmplcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
6 |
|
psdmplcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
9 |
|
mndmgm |
⊢ ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
11 |
1 7 2 8
|
mplbasss |
⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
12 |
11 6
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
13 |
7 8 3 10 5 12
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
14 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
15 |
7 8 14 3 10 5 12
|
psdval |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
16 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
17 |
16
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
19 |
18
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∈ V ) |
20 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
21 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
24 |
14
|
psrbagsn |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
27 |
14
|
psrbagaddcl |
⊢ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
28 |
23 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
29 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
31 |
1 30 2 14 6
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
32 |
31
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
34 |
28 29 32 33
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
36 |
1 2 35 6 4
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
37 |
28
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
38 |
|
ovex |
⊢ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V |
39 |
|
eqid |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
40 |
38 39
|
fnmpti |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
41 |
40
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
42 |
|
dffn3 |
⊢ ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
43 |
41 42
|
sylib |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
44 |
43 37
|
fcod |
⊢ ( 𝜑 → ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
45 |
44
|
ffnd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
46 |
|
fnresi |
⊢ ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
47 |
46
|
a1i |
⊢ ( 𝜑 → ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
48 |
14
|
psrbagf |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
50 |
49
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
51 |
50
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
52 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
53 |
|
0cn |
⊢ 0 ∈ ℂ |
54 |
52 53
|
ifcli |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ |
55 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
56 |
51 55
|
pncand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑑 ‘ 𝑖 ) ) |
57 |
56
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
59 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
60 |
14
|
psrbagaddcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
61 |
58 59 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
62 |
14
|
psrbagf |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
63 |
62
|
ffnd |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
64 |
61 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
65 |
|
1ex |
⊢ 1 ∈ V |
66 |
|
c0ex |
⊢ 0 ∈ V |
67 |
65 66
|
ifex |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V |
68 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
69 |
67 68
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 |
70 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
71 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
72 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
73 |
48
|
ffnd |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 Fn 𝐼 ) |
74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 ) |
75 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
76 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑖 → ( 𝑦 = 𝑋 ↔ 𝑖 = 𝑋 ) ) |
77 |
76
|
ifbid |
⊢ ( 𝑦 = 𝑖 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
79 |
65 66
|
ifex |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V |
80 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V ) |
81 |
68 77 78 80
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
82 |
74 70 71 71 72 75 81
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
83 |
64 70 71 71 72 82 81
|
offval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
84 |
49
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) ) |
85 |
57 83 84
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑑 ) |
86 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
87 |
86
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
88 |
87 58
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) ) ) |
89 |
|
eqid |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
90 |
|
oveq1 |
⊢ ( 𝑘 = 𝑑 → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
91 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V ) |
92 |
89 90 58 91
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) = ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
93 |
92
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) ) = ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
94 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
95 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V ) |
96 |
39 94 61 95
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
97 |
88 93 96
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
98 |
|
fvresi |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) = 𝑑 ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) = 𝑑 ) |
100 |
85 97 99
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) ) |
101 |
45 47 100
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
102 |
|
fcof1 |
⊢ ( ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( I ↾ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
103 |
37 101 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
104 |
36 103 20 6
|
fsuppco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
105 |
34 104
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
106 |
105
|
fsuppimpd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
107 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ) |
108 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
109 |
30 108 35
|
mulgnn0z |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
110 |
4 109
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
111 |
14
|
psrbagf |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 ) |
112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
113 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
114 |
112 113
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ‘ 𝑋 ) ∈ ℕ0 ) |
115 |
|
peano2nn0 |
⊢ ( ( 𝑘 ‘ 𝑋 ) ∈ ℕ0 → ( ( 𝑘 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
116 |
114 115
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
117 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ V ) |
118 |
107 110 116 117 20
|
suppssov2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ) |
119 |
106 118
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
120 |
19 20 22 119
|
isfsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
121 |
15 120
|
eqbrtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑅 ) ) |
122 |
1 7 8 35 2
|
mplelbas |
⊢ ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ↔ ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
123 |
13 121 122
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |