Metamath Proof Explorer


Theorem psdmplcl

Description: The derivative of a polynomial is a polynomial. (Contributed by SN, 12-Apr-2025)

Ref Expression
Hypotheses psdmplcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
psdmplcl.b 𝐵 = ( Base ‘ 𝑃 )
psdmplcl.i ( 𝜑𝐼𝑉 )
psdmplcl.r ( 𝜑𝑅 ∈ Mnd )
psdmplcl.x ( 𝜑𝑋𝐼 )
psdmplcl.f ( 𝜑𝐹𝐵 )
Assertion psdmplcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 psdmplcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 psdmplcl.b 𝐵 = ( Base ‘ 𝑃 )
3 psdmplcl.i ( 𝜑𝐼𝑉 )
4 psdmplcl.r ( 𝜑𝑅 ∈ Mnd )
5 psdmplcl.x ( 𝜑𝑋𝐼 )
6 psdmplcl.f ( 𝜑𝐹𝐵 )
7 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
8 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
9 mndmgm ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm )
10 4 9 syl ( 𝜑𝑅 ∈ Mgm )
11 1 7 2 8 mplbasss 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
12 11 6 sselid ( 𝜑𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
13 7 8 3 10 5 12 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
14 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
15 7 8 14 3 10 5 12 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
16 ovex ( ℕ0m 𝐼 ) ∈ V
17 16 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
18 17 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
19 18 mptexd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∈ V )
20 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
21 funmpt Fun ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
22 21 a1i ( 𝜑 → Fun ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
23 simpr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
24 14 psrbagsn ( 𝐼𝑉 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
25 3 24 syl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
26 25 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
27 14 psrbagaddcl ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
28 23 26 27 syl2anc ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
29 eqidd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
30 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
31 1 30 2 14 6 mplelf ( 𝜑𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
32 31 feqmptd ( 𝜑𝐹 = ( 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹𝑧 ) ) )
33 fveq2 ( 𝑧 = ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝐹𝑧 ) = ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
34 28 29 32 33 fmptco ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
35 eqid ( 0g𝑅 ) = ( 0g𝑅 )
36 1 2 35 6 4 mplelsfi ( 𝜑𝐹 finSupp ( 0g𝑅 ) )
37 28 fmpttd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
38 ovex ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V
39 eqid ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
40 38 39 fnmpti ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
41 40 a1i ( 𝜑 → ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
42 dffn3 ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↔ ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
43 41 42 sylib ( 𝜑 → ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
44 43 37 fcod ( 𝜑 → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ran ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
45 44 ffnd ( 𝜑 → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
46 fnresi ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
47 46 a1i ( 𝜑 → ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
48 14 psrbagf ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 )
49 48 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
50 49 ffvelcdmda ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
51 50 nn0cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℂ )
52 ax-1cn 1 ∈ ℂ
53 0cn 0 ∈ ℂ
54 52 53 ifcli if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ
55 54 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ )
56 51 55 pncand ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑑𝑖 ) )
57 56 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( 𝑑𝑖 ) ) )
58 simpr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
59 25 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
60 14 psrbagaddcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
61 58 59 60 syl2anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
62 14 psrbagf ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
63 62 ffnd ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
64 61 63 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
65 1ex 1 ∈ V
66 c0ex 0 ∈ V
67 65 66 ifex if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V
68 eqid ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) )
69 67 68 fnmpti ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼
70 69 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
71 3 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
72 inidm ( 𝐼𝐼 ) = 𝐼
73 48 ffnd ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑑 Fn 𝐼 )
74 73 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 )
75 eqidd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
76 eqeq1 ( 𝑦 = 𝑖 → ( 𝑦 = 𝑋𝑖 = 𝑋 ) )
77 76 ifbid ( 𝑦 = 𝑖 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
78 simpr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → 𝑖𝐼 )
79 65 66 ifex if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V
80 79 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V )
81 68 77 78 80 fvmptd3 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
82 74 70 71 71 72 75 81 ofval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
83 64 70 71 71 72 82 81 offval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
84 49 feqmptd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 = ( 𝑖𝐼 ↦ ( 𝑑𝑖 ) ) )
85 57 83 84 3eqtr4d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑑 )
86 28 adantlr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
87 86 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
88 87 58 fvco3d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) ) )
89 eqid ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
90 oveq1 ( 𝑘 = 𝑑 → ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
91 ovexd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V )
92 89 90 58 91 fvmptd3 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) = ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
93 92 fveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ 𝑑 ) ) = ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
94 oveq1 ( 𝑏 = ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
95 ovexd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ V )
96 39 94 61 95 fvmptd3 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
97 88 93 96 3eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
98 fvresi ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) = 𝑑 )
99 98 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) = 𝑑 )
100 85 97 99 3eqtr4d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ‘ 𝑑 ) = ( ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ‘ 𝑑 ) )
101 45 47 100 eqfnfvd ( 𝜑 → ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) )
102 fcof1 ( ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( ( 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑏f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( I ↾ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ) → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } –1-1→ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
103 37 101 102 syl2anc ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } –1-1→ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
104 36 103 20 6 fsuppco ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) finSupp ( 0g𝑅 ) )
105 34 104 eqbrtrrd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) finSupp ( 0g𝑅 ) )
106 105 fsuppimpd ( 𝜑 → ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g𝑅 ) ) ∈ Fin )
107 ssidd ( 𝜑 → ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g𝑅 ) ) ⊆ ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g𝑅 ) ) )
108 eqid ( .g𝑅 ) = ( .g𝑅 )
109 30 108 35 mulgnn0z ( ( 𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
110 4 109 sylan ( ( 𝜑𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
111 14 psrbagf ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 )
112 111 adantl ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
113 5 adantr ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
114 112 113 ffvelcdmd ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘𝑋 ) ∈ ℕ0 )
115 peano2nn0 ( ( 𝑘𝑋 ) ∈ ℕ0 → ( ( 𝑘𝑋 ) + 1 ) ∈ ℕ0 )
116 114 115 syl ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑘𝑋 ) + 1 ) ∈ ℕ0 )
117 fvexd ( ( 𝜑𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ V )
118 107 110 116 117 20 suppssov2 ( 𝜑 → ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) supp ( 0g𝑅 ) ) ⊆ ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) supp ( 0g𝑅 ) ) )
119 106 118 ssfid ( 𝜑 → ( ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) supp ( 0g𝑅 ) ) ∈ Fin )
120 19 20 22 119 isfsuppd ( 𝜑 → ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) finSupp ( 0g𝑅 ) )
121 15 120 eqbrtrd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) finSupp ( 0g𝑅 ) )
122 1 7 8 35 2 mplelbas ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ↔ ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) finSupp ( 0g𝑅 ) ) )
123 13 121 122 sylanbrc ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )