Metamath Proof Explorer


Theorem psdmrn

Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008)

Ref Expression
Assertion psdmrn ( 𝑅 ∈ PosetRel → ( dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ssun1 dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 )
2 dmrnssfld ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝑅
3 1 2 sstri dom 𝑅 𝑅
4 3 a1i ( 𝑅 ∈ PosetRel → dom 𝑅 𝑅 )
5 pslem ( 𝑅 ∈ PosetRel → ( ( ( 𝑥 𝑅 𝑥𝑥 𝑅 𝑥 ) → 𝑥 𝑅 𝑥 ) ∧ ( 𝑥 𝑅𝑥 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑥𝑥 𝑅 𝑥 ) → 𝑥 = 𝑥 ) ) )
6 5 simp2d ( 𝑅 ∈ PosetRel → ( 𝑥 𝑅𝑥 𝑅 𝑥 ) )
7 vex 𝑥 ∈ V
8 7 7 breldm ( 𝑥 𝑅 𝑥𝑥 ∈ dom 𝑅 )
9 6 8 syl6 ( 𝑅 ∈ PosetRel → ( 𝑥 𝑅𝑥 ∈ dom 𝑅 ) )
10 9 ssrdv ( 𝑅 ∈ PosetRel → 𝑅 ⊆ dom 𝑅 )
11 4 10 eqssd ( 𝑅 ∈ PosetRel → dom 𝑅 = 𝑅 )
12 ssun2 ran 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 )
13 12 2 sstri ran 𝑅 𝑅
14 13 a1i ( 𝑅 ∈ PosetRel → ran 𝑅 𝑅 )
15 7 7 brelrn ( 𝑥 𝑅 𝑥𝑥 ∈ ran 𝑅 )
16 6 15 syl6 ( 𝑅 ∈ PosetRel → ( 𝑥 𝑅𝑥 ∈ ran 𝑅 ) )
17 16 ssrdv ( 𝑅 ∈ PosetRel → 𝑅 ⊆ ran 𝑅 )
18 14 17 eqssd ( 𝑅 ∈ PosetRel → ran 𝑅 = 𝑅 )
19 11 18 jca ( 𝑅 ∈ PosetRel → ( dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅 ) )