Step |
Hyp |
Ref |
Expression |
1 |
|
psdmul.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psdmul.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psdmul.p |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
psdmul.m |
⊢ · = ( .r ‘ 𝑆 ) |
5 |
|
psdmul.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
psdmul.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
psdmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
8 |
|
psdmul.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
psdmul.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
12 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
12
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
16 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
17 |
16
|
psrbagsn |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
20 |
16
|
psrbagaddcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
21 |
15 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
22 |
16
|
psrbaglefi |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin ) |
23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin ) |
24 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
25 |
6
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
26 |
25
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Mnd ) |
28 |
16
|
psrbagf |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
31 |
29 30
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
32 |
|
peano2nn0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
35 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
36 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Ring ) |
37 |
1 10 16 2 8
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
39 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
41 |
38 40
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
42 |
1 10 16 2 9
|
psrelbas |
⊢ ( 𝜑 → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
44 |
|
eqid |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
45 |
16 44
|
psrbagconcl |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
46 |
21 45
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
47 |
|
elrabi |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
48 |
46 47
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
49 |
43 48
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
50 |
10 35 36 41 49
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
51 |
10 24 27 34 50
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
52 |
|
disjdifr |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = ∅ |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = ∅ ) |
54 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
55 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
56 |
54 55
|
ifcli |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
57 |
56
|
nn0ge0i |
⊢ 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 ) |
58 |
29
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
59 |
58
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℝ ) |
60 |
56
|
nn0rei |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ |
61 |
60
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ ) |
62 |
59 61
|
addge01d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 ) ↔ ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
63 |
57 62
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ∀ 𝑖 ∈ 𝐼 ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
65 |
29
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 ) |
66 |
54 55
|
ifcli |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
67 |
66
|
elexi |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V |
68 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
69 |
67 68
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 |
70 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
71 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
72 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
73 |
65 70 71 71 72
|
offn |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
74 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
75 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑖 → ( 𝑦 = 𝑋 ↔ 𝑖 = 𝑋 ) ) |
76 |
75
|
ifbid |
⊢ ( 𝑦 = 𝑖 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
77 |
56
|
elexi |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V |
78 |
76 68 77
|
fvmpt |
⊢ ( 𝑖 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
80 |
65 70 71 71 72 74 79
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
81 |
65 73 71 71 72 74 80
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
82 |
64 81
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
84 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
85 |
16
|
psrbagf |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
87 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
88 |
16
|
psrbagf |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
89 |
21 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
91 |
|
nn0re |
⊢ ( 𝑞 ∈ ℕ0 → 𝑞 ∈ ℝ ) |
92 |
|
nn0re |
⊢ ( 𝑟 ∈ ℕ0 → 𝑟 ∈ ℝ ) |
93 |
|
nn0re |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) |
94 |
|
letr |
⊢ ( ( 𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
95 |
91 92 93 94
|
syl3an |
⊢ ( ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
96 |
95
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
97 |
84 86 87 90 96
|
caoftrn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘r ≤ 𝑑 ∧ 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) → 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
98 |
83 97
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘r ≤ 𝑑 → 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
99 |
98
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
100 |
|
undifr |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
101 |
99 100
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
103 |
10 11 14 23 51 53 102
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
104 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
105 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
106 |
105
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
107 |
106
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V |
108 |
107
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V ) |
109 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ V |
110 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
111 |
109 110
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
112 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
113 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
114 |
112 23 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
115 |
10 104 24 108 50 114 14 33
|
gsummulg |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
116 |
|
difrab |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } |
117 |
116
|
eleq2i |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ) |
118 |
|
breq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
119 |
|
breq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∘r ≤ 𝑑 ↔ 𝑢 ∘r ≤ 𝑑 ) ) |
120 |
119
|
notbid |
⊢ ( 𝑘 = 𝑢 → ( ¬ 𝑘 ∘r ≤ 𝑑 ↔ ¬ 𝑢 ∘r ≤ 𝑑 ) ) |
121 |
118 120
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) ↔ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) |
122 |
121
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) |
123 |
16
|
psrbagf |
⊢ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
124 |
123
|
ffnd |
⊢ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑢 Fn 𝐼 ) |
125 |
124
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 Fn 𝐼 ) |
126 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
127 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
128 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
129 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 ) |
130 |
66
|
a1i |
⊢ ( 𝑦 ∈ 𝐼 → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
131 |
68 130
|
fmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 |
132 |
131
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
133 |
132
|
ffnd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
134 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
135 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
136 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
137 |
129 134 127 127 72 135 136
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
138 |
125 126 127 127 72 128 137
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
139 |
125 129 127 127 72 128 135
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
140 |
139
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢 ∘r ≤ 𝑑 ↔ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
141 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
142 |
140 141
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢 ∘r ≤ 𝑑 ↔ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
143 |
138 142
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ↔ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
144 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
145 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
146 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
147 |
145 146
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
148 |
147
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
149 |
148
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
150 |
|
nn0nlt0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 → ¬ ( 𝑑 ‘ 𝑋 ) < 0 ) |
151 |
144 150
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( 𝑑 ‘ 𝑋 ) < 0 ) |
152 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
153 |
152
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
154 |
153
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
155 |
154
|
addridd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) + 0 ) = ( 𝑑 ‘ 𝑖 ) ) |
156 |
155
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
157 |
156
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
158 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 ) |
159 |
158
|
oveq2d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) |
160 |
159
|
breq2d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) ) |
161 |
160
|
imbi1d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ↔ ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
162 |
157 161
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 ≠ 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
163 |
162
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
164 |
163
|
impancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑖 ≠ 𝑋 → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
165 |
164
|
necon1bd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → 𝑖 = 𝑋 ) ) |
166 |
165
|
ancrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
167 |
166
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
168 |
167
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
169 |
168
|
anim1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
170 |
169
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
171 |
|
rexim |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
172 |
171
|
imp |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑋 ) ) |
174 |
|
fveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑋 ) ) |
175 |
173 174
|
breq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
176 |
175
|
notbid |
⊢ ( 𝑖 = 𝑋 → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
177 |
176
|
ceqsrexbv |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ↔ ( 𝑋 ∈ 𝐼 ∧ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
178 |
177
|
simprbi |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
179 |
172 178
|
syl |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
180 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
181 |
180
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℝ ) |
182 |
148
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℝ ) |
183 |
181 182
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ↔ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
184 |
183
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
185 |
179 184
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
186 |
170 185
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
187 |
|
breq2 |
⊢ ( ( 𝑢 ‘ 𝑋 ) = 0 → ( ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ↔ ( 𝑑 ‘ 𝑋 ) < 0 ) ) |
188 |
186 187
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → ( 𝑑 ‘ 𝑋 ) < 0 ) ) |
189 |
151 188
|
mtod |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) |
190 |
189
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≠ 0 ) |
191 |
|
elnnne0 |
⊢ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ ↔ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ≠ 0 ) ) |
192 |
149 190 191
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ ) |
193 |
|
elfzo0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ↔ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
194 |
144 192 186 193
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ) |
195 |
|
fzostep1 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ∨ ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) ) |
196 |
194 195
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ∨ ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) ) |
197 |
149
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℝ ) |
198 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
199 |
198
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
200 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
201 |
|
iftrue |
⊢ ( 𝑖 = 𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 1 ) |
202 |
174 201
|
oveq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
203 |
173 202
|
breq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
204 |
203
|
rspcv |
⊢ ( 𝑋 ∈ 𝐼 → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
205 |
200 204
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
206 |
205
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
207 |
206
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
208 |
197 199 207
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) |
209 |
208
|
intn3an3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
210 |
|
elfzo0 |
⊢ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ↔ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
211 |
209 210
|
sylnibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ) |
212 |
196 211
|
orcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
213 |
143 212
|
sylbida |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
214 |
213
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
215 |
122 214
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
216 |
117 215
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
217 |
216
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
218 |
217
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
219 |
218
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
220 |
16
|
psrbaglefi |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ Fin ) |
221 |
220
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ Fin ) |
222 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Mnd ) |
223 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
224 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Ring ) |
225 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
226 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
227 |
226
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
228 |
225 227
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
229 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
230 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
231 |
230
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
232 |
231
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
233 |
225 123
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
234 |
233
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
235 |
234
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
236 |
235
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
237 |
56
|
nn0cni |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ |
238 |
237
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
239 |
232 236 238
|
subadd23d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
240 |
232 238 236
|
addsubassd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
241 |
239 240
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) |
242 |
241
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
243 |
|
eqid |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
244 |
16 243
|
psrbagconcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
245 |
|
elrabi |
⊢ ( ( 𝑑 ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
246 |
244 245
|
syl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
247 |
246
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
248 |
16
|
psrbagf |
⊢ ( ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f − 𝑢 ) : 𝐼 ⟶ ℕ0 ) |
249 |
247 248
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) : 𝐼 ⟶ ℕ0 ) |
250 |
249
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) Fn 𝐼 ) |
251 |
69
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
252 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ 𝑉 ) |
253 |
230
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 Fn 𝐼 ) |
254 |
234
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 Fn 𝐼 ) |
255 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
256 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
257 |
253 254 252 252 72 255 256
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) ) |
258 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
259 |
250 251 252 252 72 257 258
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
260 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
261 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
262 |
260 261 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
263 |
262 88
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
264 |
263
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
265 |
253 251 252 252 72 255 258
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
266 |
264 254 252 252 72 265 256
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
267 |
242 259 266
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) |
268 |
16
|
psrbagaddcl |
⊢ ( ( ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
269 |
247 261 268
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
270 |
267 269
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
271 |
229 270
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
272 |
10 35 224 228 271
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
273 |
10 24 222 223 272
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
274 |
|
disjdifr |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = ∅ |
275 |
274
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = ∅ ) |
276 |
|
simpl |
⊢ ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) → 𝑘 ∘r ≤ 𝑑 ) |
277 |
276
|
a1i |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) → 𝑘 ∘r ≤ 𝑑 ) ) |
278 |
277
|
ss2rabi |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
279 |
278
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
280 |
|
undifr |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↔ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
281 |
279 280
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
282 |
281
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
283 |
10 11 14 221 273 275 282
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
284 |
|
eldifi |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
285 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑋 ∈ 𝐼 ) |
286 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑋 ) = ( 𝑑 ‘ 𝑋 ) ) |
287 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
288 |
253 254 252 252 72 286 287
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
289 |
285 288
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
290 |
284 289
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
291 |
290
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) ) |
292 |
234 285
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
293 |
284 292
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
294 |
293
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℂ ) |
295 |
31
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
296 |
295
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
297 |
294 296
|
pncan3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) = ( 𝑑 ‘ 𝑋 ) ) |
298 |
291 297
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) = ( 𝑑 ‘ 𝑋 ) ) |
299 |
298
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
300 |
249 285
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 ) |
301 |
284 300
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 ) |
302 |
301
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℂ ) |
303 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → 1 ∈ ℂ ) |
304 |
294 302 303
|
addassd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ) |
305 |
299 304
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ) |
306 |
305
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
307 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → 𝑅 ∈ Mnd ) |
308 |
|
peano2nn0 |
⊢ ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
309 |
300 308
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
310 |
284 309
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
311 |
284 272
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
312 |
10 24 11
|
mulgnn0dir |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ∧ ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
313 |
307 293 310 311 312
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
314 |
306 313
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
315 |
314
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
316 |
315
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
317 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
318 |
221 317
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ Fin ) |
319 |
10 24 222 292 272
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
320 |
284 319
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
321 |
10 24 222 309 272
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
322 |
284 321
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
323 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
324 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
325 |
10 11 14 318 320 322 323 324
|
gsummptfidmadd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
326 |
316 325
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
327 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑋 ∈ 𝐼 ) |
328 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑑 Fn 𝐼 ) |
329 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
330 |
329 124
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 Fn 𝐼 ) |
331 |
330
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑢 Fn 𝐼 ) |
332 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝐼 ∈ 𝑉 ) |
333 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑋 ) = ( 𝑑 ‘ 𝑋 ) ) |
334 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
335 |
328 331 332 332 72 333 334
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
336 |
327 335
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
337 |
|
fveq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
338 |
337
|
eqeq1d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ‘ 𝑋 ) = 0 ↔ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
339 |
119 338
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
340 |
339
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
341 |
340
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
342 |
341
|
simprd |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → ( 𝑢 ‘ 𝑋 ) = 0 ) |
343 |
342
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑢 ‘ 𝑋 ) = 0 ) |
344 |
343
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) = ( ( 𝑑 ‘ 𝑋 ) − 0 ) ) |
345 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
346 |
345
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
347 |
346
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) − 0 ) = ( 𝑑 ‘ 𝑋 ) ) |
348 |
336 344 347
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) = ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) |
349 |
348
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) |
350 |
349
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
351 |
350
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
352 |
351
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
353 |
326 352
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
354 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Grp ) |
355 |
106
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ V |
356 |
355
|
difexi |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ V |
357 |
356
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ V ) |
358 |
320
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) ) |
359 |
|
ovex |
⊢ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ V |
360 |
359 323
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
361 |
360
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
362 |
361 318 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
363 |
10 104 14 357 358 362
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
364 |
322
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) ) |
365 |
|
ovex |
⊢ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ V |
366 |
365 324
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
367 |
366
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
368 |
367 318 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
369 |
10 104 14 357 364 368
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
370 |
106
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ V |
371 |
370
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ V ) |
372 |
278
|
sseli |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
373 |
372 321
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
374 |
373
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⟶ ( Base ‘ 𝑅 ) ) |
375 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
376 |
365 375
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } |
377 |
376
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
378 |
221 279
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ Fin ) |
379 |
377 378 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
380 |
10 104 14 371 374 379
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
381 |
10 11 354 363 369 380
|
grpassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
382 |
283 353 381
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
383 |
219 382
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
384 |
103 115 383
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
385 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 ∈ 𝐵 ) |
386 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐺 ∈ 𝐵 ) |
387 |
1 2 35 4 16 385 386 21
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
388 |
387
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
389 |
107
|
difexi |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ V |
390 |
389
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ V ) |
391 |
|
eldifi |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
392 |
39 123
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
393 |
392
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
394 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑋 ∈ 𝐼 ) |
395 |
393 394
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
396 |
10 24 27 395 50
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
397 |
391 396
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
398 |
397
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ⟶ ( Base ‘ 𝑅 ) ) |
399 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
400 |
359 399
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
401 |
400
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
402 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
403 |
23 402
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ Fin ) |
404 |
401 403 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
405 |
10 104 14 390 398 404
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
406 |
10 11 354 369 380
|
grpcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
407 |
10 11 354 405 363 406
|
grpassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
408 |
384 388 407
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
409 |
408
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
410 |
1 2 4 12 8 9
|
psrmulcl |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
411 |
1 2 16 5 6 7 410
|
psdval |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
412 |
25
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
413 |
1 2 5 412 7 8
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
414 |
1 2 4 12 413 9
|
psrmulcl |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
415 |
1 2 5 412 7 9
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 ) |
416 |
1 2 4 12 8 415
|
psrmulcl |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ∈ 𝐵 ) |
417 |
1 2 11 3 414 416
|
psradd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) ) |
418 |
1 10 16 2 414
|
psrelbas |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
419 |
418
|
ffnd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
420 |
1 10 16 2 416
|
psrelbas |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
421 |
420
|
ffnd |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
422 |
106
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
423 |
|
inidm |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∩ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
424 |
413
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
425 |
1 2 35 4 16 424 386 15
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) ) |
426 |
355
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ V ) |
427 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Ring ) |
428 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
429 |
1 10 16 2 413
|
psrelbas |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
430 |
429
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
431 |
430
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
432 |
428 431
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
433 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
434 |
16 243
|
psrbagconcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
435 |
434
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
436 |
|
elrabi |
⊢ ( ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑑 ∘f − 𝑏 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
437 |
435 436
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
438 |
433 437
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
439 |
10 35 427 432 438
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
440 |
439
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) : { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⟶ ( Base ‘ 𝑅 ) ) |
441 |
|
ovex |
⊢ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ∈ V |
442 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) |
443 |
441 442
|
fnmpti |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
444 |
443
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
445 |
444 221 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
446 |
|
eqid |
⊢ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
447 |
|
df-of |
⊢ ∘f + = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
448 |
|
vex |
⊢ 𝑢 ∈ V |
449 |
448
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 ∈ V ) |
450 |
|
ssv |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ V |
451 |
450
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ V ) |
452 |
|
ssv |
⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V |
453 |
452
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V ) |
454 |
447 449 451 453
|
elimampo |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
455 |
454
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
456 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
457 |
16
|
psrbagf |
⊢ ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑚 : 𝐼 ⟶ ℕ0 ) |
458 |
457
|
ffund |
⊢ ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → Fun 𝑚 ) |
459 |
456 458
|
syl |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → Fun 𝑚 ) |
460 |
459
|
funfnd |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 Fn dom 𝑚 ) |
461 |
460
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 Fn dom 𝑚 ) |
462 |
|
velsn |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
463 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
464 |
|
funeq |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( Fun 𝑛 ↔ Fun ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
465 |
463 464
|
mpbiri |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → Fun 𝑛 ) |
466 |
465
|
funfnd |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → 𝑛 Fn dom 𝑛 ) |
467 |
462 466
|
sylbi |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 Fn dom 𝑛 ) |
468 |
467
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑛 Fn dom 𝑛 ) |
469 |
|
vex |
⊢ 𝑚 ∈ V |
470 |
469
|
dmex |
⊢ dom 𝑚 ∈ V |
471 |
470
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑚 ∈ V ) |
472 |
|
vex |
⊢ 𝑛 ∈ V |
473 |
472
|
dmex |
⊢ dom 𝑛 ∈ V |
474 |
473
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑛 ∈ V ) |
475 |
|
eqid |
⊢ ( dom 𝑚 ∩ dom 𝑛 ) = ( dom 𝑚 ∩ dom 𝑛 ) |
476 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚 ‘ 𝑜 ) = ( 𝑚 ‘ 𝑜 ) ) |
477 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛 ‘ 𝑜 ) = ( 𝑛 ‘ 𝑜 ) ) |
478 |
461 468 471 474 475 476 477
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
479 |
478
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
480 |
|
elsni |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
481 |
480
|
oveq2d |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑚 ∘f + 𝑛 ) = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
482 |
481
|
eqeq2d |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
483 |
482
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
484 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ 𝑉 ) |
485 |
456 457
|
syl |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 : 𝐼 ⟶ ℕ0 ) |
486 |
485
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
487 |
131
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
488 |
|
nn0cn |
⊢ ( 𝑞 ∈ ℕ0 → 𝑞 ∈ ℂ ) |
489 |
|
nn0cn |
⊢ ( 𝑟 ∈ ℕ0 → 𝑟 ∈ ℂ ) |
490 |
|
nn0cn |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℂ ) |
491 |
|
addsubass |
⊢ ( ( 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
492 |
488 489 490 491
|
syl3an |
⊢ ( ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
493 |
492
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
494 |
484 486 487 487 493
|
caofass |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
495 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
496 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
497 |
68 76 495 496
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
498 |
133 133 5 5 72 497 497
|
offval |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
499 |
498
|
oveq2d |
⊢ ( 𝜑 → ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
500 |
499
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
501 |
237
|
subidi |
⊢ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) = 0 |
502 |
501
|
mpteq2i |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) |
503 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) |
504 |
502 503
|
eqtr4i |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝐼 × { 0 } ) |
505 |
504
|
oveq2i |
⊢ ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) |
506 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 0 ∈ ℤ ) |
507 |
488
|
addridd |
⊢ ( 𝑞 ∈ ℕ0 → ( 𝑞 + 0 ) = 𝑞 ) |
508 |
507
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑞 ∈ ℕ0 ) → ( 𝑞 + 0 ) = 𝑞 ) |
509 |
484 486 506 508
|
caofid0r |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) = 𝑚 ) |
510 |
505 509
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 ) |
511 |
494 500 510
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 ) |
512 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
513 |
511 512
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
514 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
515 |
514
|
eleq1d |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
516 |
513 515
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
517 |
516
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
518 |
483 517
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
519 |
479 518
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
520 |
519
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
521 |
455 520
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
522 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
523 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ) |
524 |
|
elsng |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
525 |
523 524
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
526 |
68 525
|
mpbiri |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
527 |
526
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
528 |
447
|
mpofun |
⊢ Fun ∘f + |
529 |
528
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → Fun ∘f + ) |
530 |
|
xpss |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ ( V × V ) |
531 |
470
|
inex1 |
⊢ ( dom 𝑚 ∩ dom 𝑛 ) ∈ V |
532 |
531
|
mptex |
⊢ ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V |
533 |
532
|
rgen2w |
⊢ ∀ 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V |
534 |
447
|
dmmpoga |
⊢ ( ∀ 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V → dom ∘f + = ( V × V ) ) |
535 |
533 534
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → dom ∘f + = ( V × V ) ) |
536 |
530 535
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ dom ∘f + ) |
537 |
522 527 529 536
|
elovimad |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) |
538 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝐼 ∈ 𝑉 ) |
539 |
|
elrabi |
⊢ ( 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
540 |
16
|
psrbagf |
⊢ ( 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑣 : 𝐼 ⟶ ℕ0 ) |
541 |
539 540
|
syl |
⊢ ( 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑣 : 𝐼 ⟶ ℕ0 ) |
542 |
541
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑣 : 𝐼 ⟶ ℕ0 ) |
543 |
131
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
544 |
492
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
545 |
538 542 543 543 544
|
caofass |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑣 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
546 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
547 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
548 |
546 546 538 538 72 547 547
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
549 |
548
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
550 |
504
|
oveq2i |
⊢ ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣 ∘f + ( 𝐼 × { 0 } ) ) |
551 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 0 ∈ ℤ ) |
552 |
|
nn0cn |
⊢ ( 𝑝 ∈ ℕ0 → 𝑝 ∈ ℂ ) |
553 |
552
|
addridd |
⊢ ( 𝑝 ∈ ℕ0 → ( 𝑝 + 0 ) = 𝑝 ) |
554 |
553
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 ) |
555 |
538 542 551 554
|
caofid0r |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( 𝐼 × { 0 } ) ) = 𝑣 ) |
556 |
550 555
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑣 ) |
557 |
545 549 556
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑣 = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
558 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
559 |
558
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
560 |
557 559
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
561 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
562 |
16
|
psrbagaddcl |
⊢ ( ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
563 |
456 561 562
|
syl2an2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
564 |
16
|
psrbagf |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
565 |
563 564
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
566 |
565
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
567 |
|
feq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 : 𝐼 ⟶ ℕ0 ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) ) |
568 |
566 567
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
569 |
483 568
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
570 |
479 569
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
571 |
570
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
572 |
455 571
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
573 |
572
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
574 |
573
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
575 |
574
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
576 |
237
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
577 |
575 576
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
578 |
577
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
579 |
573
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 Fn 𝐼 ) |
580 |
579 546 538 538 72
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
581 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
582 |
579 546 538 538 72 581 547
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
583 |
580 546 538 538 72 582 547
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
584 |
573
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
585 |
578 583 584
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
586 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
587 |
586
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
588 |
585 587
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
589 |
560 588
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
590 |
446 521 537 589
|
f1o2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) –1-1-onto→ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
591 |
10 104 14 426 440 445 590
|
gsumf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
592 |
553
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 ) |
593 |
484 486 506 592
|
caofid0r |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) = 𝑚 ) |
594 |
505 593
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 ) |
595 |
494 500 594
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 ) |
596 |
595 512
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
597 |
596 515
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
598 |
597
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
599 |
483 598
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
600 |
479 599
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
601 |
600
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
602 |
455 601
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
603 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
604 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) |
605 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
606 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑑 ∘f − 𝑏 ) = ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
607 |
606
|
fveq2d |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) = ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
608 |
605 607
|
oveq12d |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
609 |
602 603 604 608
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) ) |
610 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐼 ∈ 𝑉 ) |
611 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ CRing ) |
612 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑋 ∈ 𝐼 ) |
613 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹 ∈ 𝐵 ) |
614 |
|
elrabi |
⊢ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
615 |
602 614
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
616 |
1 2 16 610 611 612 613 615
|
psdcoef |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
617 |
572
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 Fn 𝐼 ) |
618 |
131
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
619 |
618
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
620 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
621 |
|
iftrue |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 ) |
622 |
|
1ex |
⊢ 1 ∈ V |
623 |
621 68 622
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
624 |
623
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
625 |
617 619 610 610 72 620 624
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢 ‘ 𝑋 ) − 1 ) ) |
626 |
612 625
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢 ‘ 𝑋 ) − 1 ) ) |
627 |
626
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( ( ( 𝑢 ‘ 𝑋 ) − 1 ) + 1 ) ) |
628 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
629 |
628
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ℕ0 ⊆ ℂ ) |
630 |
572 629
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℂ ) |
631 |
630 612
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℂ ) |
632 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 1 ∈ ℂ ) |
633 |
631 632
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) − 1 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
634 |
627 633
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
635 |
617 619 610 610 72
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
636 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
637 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
638 |
617 619 610 610 72 636 637
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
639 |
572
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
640 |
639
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
641 |
237
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
642 |
640 641
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
643 |
610 635 619 617 638 637 642
|
offveq |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑢 ) |
644 |
643
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
645 |
634 644
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ) |
646 |
616 645
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ) |
647 |
28
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
648 |
647
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
649 |
648
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
650 |
649 640 641
|
subsub3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) |
651 |
650
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
652 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 Fn 𝐼 ) |
653 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
654 |
652 635 610 610 72 653 638
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
655 |
652 619 610 610 72
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
656 |
652 619 610 610 72 653 637
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
657 |
655 617 610 610 72 656 636
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
658 |
651 654 657
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) |
659 |
658
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) |
660 |
646 659
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
661 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Ring ) |
662 |
572 612
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
663 |
662
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℤ ) |
664 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
665 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
666 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
667 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
668 |
|
eqid |
⊢ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
669 |
16 243 668
|
psrbagleadd1 |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
670 |
665 666 667 669
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
671 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
672 |
670 671
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
673 |
483 672
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
674 |
479 673
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
675 |
674
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
676 |
455 675
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
677 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
678 |
676 677
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
679 |
664 678
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
680 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
681 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
682 |
16 668
|
psrbagconcl |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
683 |
681 676 682
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
684 |
|
elrabi |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
685 |
683 684
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
686 |
680 685
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
687 |
10 24 35
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑢 ‘ 𝑋 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
688 |
661 663 679 686 687
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
689 |
660 688
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
690 |
689
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
691 |
609 690
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
692 |
691
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
693 |
|
snex |
⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ V |
694 |
355 693
|
xpex |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∈ V |
695 |
694
|
funimaex |
⊢ ( Fun ∘f + → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V ) |
696 |
528 695
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V ) |
697 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Mnd ) |
698 |
10 35 661 679 686
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
699 |
10 24 697 662 698
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
700 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
701 |
359 700
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
702 |
701
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
703 |
702 23 113
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
704 |
460
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑚 Fn dom 𝑚 ) |
705 |
467
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑛 Fn dom 𝑛 ) |
706 |
470
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑚 ∈ V ) |
707 |
473
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑛 ∈ V ) |
708 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚 ‘ 𝑜 ) = ( 𝑚 ‘ 𝑜 ) ) |
709 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛 ‘ 𝑜 ) = ( 𝑛 ‘ 𝑜 ) ) |
710 |
704 705 706 707 475 708 709
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
711 |
710
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
712 |
711
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
713 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
714 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
715 |
714
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
716 |
715
|
rexsng |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
717 |
713 716
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
718 |
712 717
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
719 |
718
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
720 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
721 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ 𝑑 ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) ) |
722 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ‘ 𝑋 ) = ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ) |
723 |
722
|
eqeq1d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ‘ 𝑋 ) = 0 ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) |
724 |
721 723
|
anbi12d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
725 |
724
|
notbid |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
726 |
720 725
|
anbi12d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) ) |
727 |
456 713 562
|
syl2an2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
728 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
729 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
730 |
16 243 44
|
psrbagleadd1 |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
731 |
728 713 729 730
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
732 |
720
|
elrab |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
733 |
732
|
simprbi |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
734 |
731 733
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
735 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑋 ∈ 𝐼 ) |
736 |
485
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
737 |
736
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 Fn 𝐼 ) |
738 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
739 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ 𝑉 ) |
740 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑋 ) = ( 𝑚 ‘ 𝑋 ) ) |
741 |
623
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
742 |
737 738 739 739 72 740 741
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚 ‘ 𝑋 ) + 1 ) ) |
743 |
735 742
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚 ‘ 𝑋 ) + 1 ) ) |
744 |
736 735
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ‘ 𝑋 ) ∈ ℕ0 ) |
745 |
|
nn0p1nn |
⊢ ( ( 𝑚 ‘ 𝑋 ) ∈ ℕ0 → ( ( 𝑚 ‘ 𝑋 ) + 1 ) ∈ ℕ ) |
746 |
744 745
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ‘ 𝑋 ) + 1 ) ∈ ℕ ) |
747 |
743 746
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ∈ ℕ ) |
748 |
747
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ≠ 0 ) |
749 |
748
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) |
750 |
749
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) |
751 |
734 750
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
752 |
726 727 751
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) |
753 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
754 |
752 753
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
755 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ 𝑑 ↔ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) ) |
756 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
757 |
756
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
758 |
131
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
759 |
756 123
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
760 |
759
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
761 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑋 ∈ 𝐼 ) |
762 |
760 761
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
763 |
339
|
notbid |
⊢ ( 𝑘 = 𝑢 → ( ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
764 |
118 763
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) ↔ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) ) |
765 |
764
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) ) |
766 |
765
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
767 |
766
|
simpld |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
768 |
767
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
769 |
768
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
770 |
756 124
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 Fn 𝐼 ) |
771 |
770
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 Fn 𝐼 ) |
772 |
771
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 Fn 𝐼 ) |
773 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
774 |
88
|
ffnd |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
775 |
773 774
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
776 |
775
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
777 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝐼 ∈ 𝑉 ) |
778 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
779 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
780 |
772 776 777 777 72 778 779
|
ofrfval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) ) |
781 |
769 780
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
782 |
781
|
r19.21bi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
783 |
782
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
784 |
65
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → 𝑑 Fn 𝐼 ) |
785 |
69
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
786 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
787 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
788 |
78
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
789 |
784 785 786 786 72 787 788
|
ofval |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
790 |
789
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
791 |
158
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 ) |
792 |
791
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) |
793 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
794 |
793
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
795 |
794
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
796 |
795
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
797 |
796
|
addridd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ‘ 𝑖 ) + 0 ) = ( 𝑑 ‘ 𝑖 ) ) |
798 |
790 792 797
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
799 |
783 798
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
800 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ‘ 𝑋 ) = 0 ) |
801 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
802 |
801 761
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
803 |
802
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 0 ≤ ( 𝑑 ‘ 𝑋 ) ) |
804 |
803
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 0 ≤ ( 𝑑 ‘ 𝑋 ) ) |
805 |
800 804
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
806 |
805
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
807 |
175 799 806
|
pm2.61ne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
808 |
807
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
809 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑑 Fn 𝐼 ) |
810 |
809
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑑 Fn 𝐼 ) |
811 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
812 |
772 810 777 777 72 778 811
|
ofrfval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
813 |
808 812
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 ∘r ≤ 𝑑 ) |
814 |
813
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → 𝑢 ∘r ≤ 𝑑 ) ) |
815 |
766
|
simprd |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
816 |
815
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
817 |
|
imnan |
⊢ ( ( 𝑢 ∘r ≤ 𝑑 → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) ↔ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
818 |
816 817
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘r ≤ 𝑑 → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
819 |
818
|
con2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → ¬ 𝑢 ∘r ≤ 𝑑 ) ) |
820 |
814 819
|
pm2.65d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) |
821 |
820
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ≠ 0 ) |
822 |
762 821 191
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ ) |
823 |
822
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 1 ≤ ( 𝑢 ‘ 𝑋 ) ) |
824 |
823
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → 1 ≤ ( 𝑢 ‘ 𝑋 ) ) |
825 |
173
|
breq2d |
⊢ ( 𝑖 = 𝑋 → ( 1 ≤ ( 𝑢 ‘ 𝑖 ) ↔ 1 ≤ ( 𝑢 ‘ 𝑋 ) ) ) |
826 |
824 825
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 = 𝑋 → 1 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
827 |
826
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 = 𝑋 ) → 1 ≤ ( 𝑢 ‘ 𝑖 ) ) |
828 |
760
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
829 |
828
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → 0 ≤ ( 𝑢 ‘ 𝑖 ) ) |
830 |
829
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 = 𝑋 ) → 0 ≤ ( 𝑢 ‘ 𝑖 ) ) |
831 |
827 830
|
ifpimpda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢 ‘ 𝑖 ) , 0 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
832 |
|
brif1 |
⊢ ( if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ↔ if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢 ‘ 𝑖 ) , 0 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
833 |
831 832
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) |
834 |
833
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) |
835 |
69
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
836 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝐼 ∈ 𝑉 ) |
837 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
838 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
839 |
835 771 836 836 72 837 838
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ↔ ∀ 𝑖 ∈ 𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
840 |
834 839
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ) |
841 |
16
|
psrbagcon |
⊢ ( ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑢 ) ) |
842 |
757 758 840 841
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑢 ) ) |
843 |
842
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
844 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
845 |
809 835 836 836 72 844 837
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
846 |
771 775 836 836 72 838 845
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
847 |
768 846
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
848 |
847
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
849 |
828
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℝ ) |
850 |
60
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ ) |
851 |
801
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
852 |
851
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℝ ) |
853 |
849 850 852
|
lesubaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
854 |
848 853
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
855 |
854
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
856 |
771 835 836 836 72
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
857 |
771 835 836 836 72 838 837
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
858 |
856 809 836 836 72 857 844
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
859 |
855 858
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) |
860 |
755 843 859
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
861 |
828
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
862 |
237
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
863 |
861 862
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
864 |
863
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
865 |
856 835 836 836 72 857 837
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
866 |
760
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
867 |
864 865 866
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
868 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
869 |
868
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
870 |
754 860 867 869
|
rspceb2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
871 |
454 719 870
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
872 |
871
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) |
873 |
|
difrab |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } |
874 |
872 873
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
875 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
876 |
874 875
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
877 |
703 876 113
|
fmptssfisupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
878 |
|
difss |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
879 |
|
disjdif |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ |
880 |
|
ssdisj |
⊢ ( ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ ) |
881 |
878 879 880
|
mp2an |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ |
882 |
881
|
ineqcomi |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ∅ |
883 |
882
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ∅ ) |
884 |
279 99
|
psdmullem |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
885 |
874 884
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) ) |
886 |
10 104 11 14 696 699 877 883 885
|
gsumsplit2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
887 |
692 886
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
888 |
425 591 887
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
889 |
415
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 ) |
890 |
1 2 35 4 16 385 889 15
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) ) ) |
891 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ CRing ) |
892 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 ∈ 𝐵 ) |
893 |
1 2 16 252 891 285 892 247
|
psdcoef |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
894 |
267
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) |
895 |
894
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
896 |
893 895
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
897 |
896
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) = ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
898 |
309
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
899 |
10 24 35
|
mulgass3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
900 |
224 898 228 271 899
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
901 |
897 900
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
902 |
901
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
903 |
902
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
904 |
10 11 14 221 321 275 282
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
905 |
890 903 904
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
906 |
419 421 422 422 423 888 905
|
offval |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
907 |
417 906
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
908 |
409 411 907
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) ) |