Metamath Proof Explorer


Theorem psdmul

Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf . (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psdmul.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdmul.b 𝐵 = ( Base ‘ 𝑆 )
psdmul.p + = ( +g𝑆 )
psdmul.m · = ( .r𝑆 )
psdmul.i ( 𝜑𝐼𝑉 )
psdmul.r ( 𝜑𝑅 ∈ CRing )
psdmul.x ( 𝜑𝑋𝐼 )
psdmul.f ( 𝜑𝐹𝐵 )
psdmul.g ( 𝜑𝐺𝐵 )
Assertion psdmul ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) )

Proof

Step Hyp Ref Expression
1 psdmul.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdmul.b 𝐵 = ( Base ‘ 𝑆 )
3 psdmul.p + = ( +g𝑆 )
4 psdmul.m · = ( .r𝑆 )
5 psdmul.i ( 𝜑𝐼𝑉 )
6 psdmul.r ( 𝜑𝑅 ∈ CRing )
7 psdmul.x ( 𝜑𝑋𝐼 )
8 psdmul.f ( 𝜑𝐹𝐵 )
9 psdmul.g ( 𝜑𝐺𝐵 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid ( +g𝑅 ) = ( +g𝑅 )
12 6 crngringd ( 𝜑𝑅 ∈ Ring )
13 12 ringcmnd ( 𝜑𝑅 ∈ CMnd )
14 13 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd )
15 simpr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
16 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
17 16 psrbagsn ( 𝐼𝑉 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
18 5 17 syl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
19 18 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
20 16 psrbagaddcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
21 15 19 20 syl2anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
22 16 psrbaglefi ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin )
23 21 22 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin )
24 eqid ( .g𝑅 ) = ( .g𝑅 )
25 6 crnggrpd ( 𝜑𝑅 ∈ Grp )
26 25 grpmndd ( 𝜑𝑅 ∈ Mnd )
27 26 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Mnd )
28 16 psrbagf ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 )
29 28 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
30 7 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
31 29 30 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
32 peano2nn0 ( ( 𝑑𝑋 ) ∈ ℕ0 → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
33 31 32 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
34 33 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
35 eqid ( .r𝑅 ) = ( .r𝑅 )
36 12 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Ring )
37 1 10 16 2 8 psrelbas ( 𝜑𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
38 37 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
39 elrabi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
40 39 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
41 38 40 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) )
42 1 10 16 2 9 psrelbas ( 𝜑𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
43 42 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
44 eqid { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) }
45 16 44 psrbagconcl ( ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
46 21 45 sylan ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
47 elrabi ( ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
48 46 47 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
49 43 48 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ∈ ( Base ‘ 𝑅 ) )
50 10 35 36 41 49 ringcld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) )
51 10 24 27 34 50 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
52 disjdifr ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∩ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) = ∅
53 52 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∩ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) = ∅ )
54 1nn0 1 ∈ ℕ0
55 0nn0 0 ∈ ℕ0
56 54 55 ifcli if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0
57 56 nn0ge0i 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 )
58 29 ffvelcdmda ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
59 58 nn0red ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℝ )
60 56 nn0rei if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ
61 60 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ )
62 59 61 addge01d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 ) ↔ ( 𝑑𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
63 57 62 mpbii ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
64 63 ralrimiva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ∀ 𝑖𝐼 ( 𝑑𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
65 29 ffnd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 )
66 54 55 ifcli if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0
67 66 elexi if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V
68 eqid ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) )
69 67 68 fnmpti ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼
70 69 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
71 5 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
72 inidm ( 𝐼𝐼 ) = 𝐼
73 65 70 71 71 72 offn ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
74 eqidd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
75 eqeq1 ( 𝑦 = 𝑖 → ( 𝑦 = 𝑋𝑖 = 𝑋 ) )
76 75 ifbid ( 𝑦 = 𝑖 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
77 56 elexi if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V
78 76 68 77 fvmpt ( 𝑖𝐼 → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
79 78 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
80 65 70 71 71 72 74 79 ofval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
81 65 73 71 71 72 74 80 ofrfval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖𝐼 ( 𝑑𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
82 64 81 mpbird ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
83 82 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
84 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
85 16 psrbagf ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 )
86 85 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
87 29 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
88 16 psrbagf ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
89 21 88 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
90 89 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
91 nn0re ( 𝑞 ∈ ℕ0𝑞 ∈ ℝ )
92 nn0re ( 𝑟 ∈ ℕ0𝑟 ∈ ℝ )
93 nn0re ( 𝑠 ∈ ℕ0𝑠 ∈ ℝ )
94 letr ( ( 𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( ( 𝑞𝑟𝑟𝑠 ) → 𝑞𝑠 ) )
95 91 92 93 94 syl3an ( ( 𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0 ) → ( ( 𝑞𝑟𝑟𝑠 ) → 𝑞𝑠 ) )
96 95 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0 ) ) → ( ( 𝑞𝑟𝑟𝑠 ) → 𝑞𝑠 ) )
97 84 86 87 90 96 caoftrn ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑘r𝑑𝑑r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) → 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
98 83 97 mpan2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑘r𝑑𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
99 98 ss2rabdv ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
100 undifr ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
101 99 100 sylib ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
102 101 eqcomd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
103 10 11 14 23 51 53 102 gsummptfidmsplit ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
104 eqid ( 0g𝑅 ) = ( 0g𝑅 )
105 ovex ( ℕ0m 𝐼 ) ∈ V
106 105 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
107 106 rabex { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V
108 107 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V )
109 ovex ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ V
110 eqid ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) )
111 109 110 fnmpti ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) }
112 111 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
113 fvexd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 0g𝑅 ) ∈ V )
114 112 23 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) finSupp ( 0g𝑅 ) )
115 10 104 24 108 50 114 14 33 gsummulg ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
116 difrab ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘r𝑑 ) }
117 116 eleq2i ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↔ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘r𝑑 ) } )
118 breq1 ( 𝑘 = 𝑢 → ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
119 breq1 ( 𝑘 = 𝑢 → ( 𝑘r𝑑𝑢r𝑑 ) )
120 119 notbid ( 𝑘 = 𝑢 → ( ¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑 ) )
121 118 120 anbi12d ( 𝑘 = 𝑢 → ( ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘r𝑑 ) ↔ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢r𝑑 ) ) )
122 121 elrab ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘r𝑑 ) } ↔ ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢r𝑑 ) ) )
123 16 psrbagf ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑢 : 𝐼 ⟶ ℕ0 )
124 123 ffnd ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑢 Fn 𝐼 )
125 124 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑢 Fn 𝐼 )
126 73 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
127 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
128 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
129 65 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 )
130 66 a1i ( 𝑦𝐼 → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0 )
131 68 130 fmpti ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0
132 131 a1i ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 )
133 132 ffnd ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
134 133 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
135 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
136 78 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
137 129 134 127 127 72 135 136 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
138 125 126 127 127 72 128 137 ofrfval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
139 125 129 127 127 72 128 135 ofrfval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢r𝑑 ↔ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
140 139 notbid ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢r𝑑 ↔ ¬ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
141 rexnal ( ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ↔ ¬ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) )
142 140 141 bitr4di ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢r𝑑 ↔ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
143 138 142 anbi12d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢r𝑑 ) ↔ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
144 31 ad2antrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑑𝑋 ) ∈ ℕ0 )
145 123 adantl ( ( 𝜑𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑢 : 𝐼 ⟶ ℕ0 )
146 7 adantr ( ( 𝜑𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
147 145 146 ffvelcdmd ( ( 𝜑𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢𝑋 ) ∈ ℕ0 )
148 147 adantlr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢𝑋 ) ∈ ℕ0 )
149 148 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑢𝑋 ) ∈ ℕ0 )
150 nn0nlt0 ( ( 𝑑𝑋 ) ∈ ℕ0 → ¬ ( 𝑑𝑋 ) < 0 )
151 144 150 syl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ¬ ( 𝑑𝑋 ) < 0 )
152 29 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
153 152 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
154 153 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℂ )
155 154 addridd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑑𝑖 ) + 0 ) = ( 𝑑𝑖 ) )
156 155 breq2d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + 0 ) ↔ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
157 156 biimpd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + 0 ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
158 ifnefalse ( 𝑖𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 )
159 158 oveq2d ( 𝑖𝑋 → ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑𝑖 ) + 0 ) )
160 159 breq2d ( 𝑖𝑋 → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + 0 ) ) )
161 160 imbi1d ( 𝑖𝑋 → ( ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ↔ ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + 0 ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
162 157 161 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( 𝑖𝑋 → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
163 162 imp ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
164 163 impancom ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) ∧ ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑖𝑋 → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
165 164 necon1bd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) ∧ ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → 𝑖 = 𝑋 ) )
166 165 ancrd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) ∧ ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
167 166 ex ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑖𝐼 ) → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ) )
168 167 ralimdva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ) )
169 168 anim1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) → ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
170 169 imp ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
171 rexim ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ∃ 𝑖𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) )
172 171 imp ( ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) → ∃ 𝑖𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
173 fveq2 ( 𝑖 = 𝑋 → ( 𝑢𝑖 ) = ( 𝑢𝑋 ) )
174 fveq2 ( 𝑖 = 𝑋 → ( 𝑑𝑖 ) = ( 𝑑𝑋 ) )
175 173 174 breq12d ( 𝑖 = 𝑋 → ( ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ↔ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) ) )
176 175 notbid ( 𝑖 = 𝑋 → ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ↔ ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) ) )
177 176 ceqsrexbv ( ∃ 𝑖𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ↔ ( 𝑋𝐼 ∧ ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) ) )
178 177 simprbi ( ∃ 𝑖𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) → ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) )
179 172 178 syl ( ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) → ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) )
180 31 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
181 180 nn0red ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℝ )
182 148 nn0red ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢𝑋 ) ∈ ℝ )
183 181 182 ltnled ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑𝑋 ) < ( 𝑢𝑋 ) ↔ ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) ) )
184 183 biimpar ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ¬ ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) ) → ( 𝑑𝑋 ) < ( 𝑢𝑋 ) )
185 179 184 sylan2 ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑑𝑋 ) < ( 𝑢𝑋 ) )
186 170 185 syldan ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑑𝑋 ) < ( 𝑢𝑋 ) )
187 breq2 ( ( 𝑢𝑋 ) = 0 → ( ( 𝑑𝑋 ) < ( 𝑢𝑋 ) ↔ ( 𝑑𝑋 ) < 0 ) )
188 186 187 syl5ibcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ( 𝑢𝑋 ) = 0 → ( 𝑑𝑋 ) < 0 ) )
189 151 188 mtod ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ¬ ( 𝑢𝑋 ) = 0 )
190 189 neqned ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑢𝑋 ) ≠ 0 )
191 elnnne0 ( ( 𝑢𝑋 ) ∈ ℕ ↔ ( ( 𝑢𝑋 ) ∈ ℕ0 ∧ ( 𝑢𝑋 ) ≠ 0 ) )
192 149 190 191 sylanbrc ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑢𝑋 ) ∈ ℕ )
193 elfzo0 ( ( 𝑑𝑋 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) ↔ ( ( 𝑑𝑋 ) ∈ ℕ0 ∧ ( 𝑢𝑋 ) ∈ ℕ ∧ ( 𝑑𝑋 ) < ( 𝑢𝑋 ) ) )
194 144 192 186 193 syl3anbrc ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑑𝑋 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) )
195 fzostep1 ( ( 𝑑𝑋 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) ∨ ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) ) )
196 194 195 syl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) ∨ ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) ) )
197 149 nn0red ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑢𝑋 ) ∈ ℝ )
198 33 ad2antrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
199 198 nn0red ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℝ )
200 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
201 iftrue ( 𝑖 = 𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 1 )
202 174 201 oveq12d ( 𝑖 = 𝑋 → ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑𝑋 ) + 1 ) )
203 173 202 breq12d ( 𝑖 = 𝑋 → ( ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢𝑋 ) ≤ ( ( 𝑑𝑋 ) + 1 ) ) )
204 203 rspcv ( 𝑋𝐼 → ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢𝑋 ) ≤ ( ( 𝑑𝑋 ) + 1 ) ) )
205 200 204 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢𝑋 ) ≤ ( ( 𝑑𝑋 ) + 1 ) ) )
206 205 imp ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢𝑋 ) ≤ ( ( 𝑑𝑋 ) + 1 ) )
207 206 adantrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( 𝑢𝑋 ) ≤ ( ( 𝑑𝑋 ) + 1 ) )
208 197 199 207 lensymd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ¬ ( ( 𝑑𝑋 ) + 1 ) < ( 𝑢𝑋 ) )
209 208 intn3an3d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ¬ ( ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢𝑋 ) ∈ ℕ ∧ ( ( 𝑑𝑋 ) + 1 ) < ( 𝑢𝑋 ) ) )
210 elfzo0 ( ( ( 𝑑𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) ↔ ( ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢𝑋 ) ∈ ℕ ∧ ( ( 𝑑𝑋 ) + 1 ) < ( 𝑢𝑋 ) ) )
211 209 210 sylnibr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ¬ ( ( 𝑑𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢𝑋 ) ) )
212 196 211 orcnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖𝐼 ¬ ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) ) → ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
213 143 212 sylbida ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢r𝑑 ) ) → ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
214 213 anasss ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢r𝑑 ) ) ) → ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
215 122 214 sylan2b ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘r𝑑 ) } ) → ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
216 117 215 sylan2b ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( 𝑑𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
217 216 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
218 217 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
219 218 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
220 16 psrbaglefi ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∈ Fin )
221 220 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∈ Fin )
222 26 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑅 ∈ Mnd )
223 33 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
224 12 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑅 ∈ Ring )
225 elrabi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
226 37 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
227 226 ffvelcdmda ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) )
228 225 227 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) )
229 42 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
230 29 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
231 230 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
232 231 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℂ )
233 225 123 syl ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑢 : 𝐼 ⟶ ℕ0 )
234 233 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑢 : 𝐼 ⟶ ℕ0 )
235 234 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℕ0 )
236 235 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℂ )
237 56 nn0cni if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ
238 237 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ )
239 232 236 238 subadd23d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑑𝑖 ) − ( 𝑢𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢𝑖 ) ) ) )
240 232 238 236 addsubassd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) = ( ( 𝑑𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢𝑖 ) ) ) )
241 239 240 eqtr4d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑑𝑖 ) − ( 𝑢𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) )
242 241 mpteq2dva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) − ( 𝑢𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) ) )
243 eqid { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 }
244 16 243 psrbagconcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑢 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
245 elrabi ( ( 𝑑f𝑢 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → ( 𝑑f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
246 244 245 syl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
247 246 adantll ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
248 16 psrbagf ( ( 𝑑f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑑f𝑢 ) : 𝐼 ⟶ ℕ0 )
249 247 248 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑢 ) : 𝐼 ⟶ ℕ0 )
250 249 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑢 ) Fn 𝐼 )
251 69 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
252 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐼𝑉 )
253 230 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑑 Fn 𝐼 )
254 234 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑢 Fn 𝐼 )
255 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
256 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
257 253 254 252 252 72 255 256 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f𝑢 ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) − ( 𝑢𝑖 ) ) )
258 78 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
259 250 251 252 252 72 257 258 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) − ( 𝑢𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
260 simplr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
261 18 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
262 260 261 20 syl2anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
263 262 88 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
264 263 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
265 253 251 252 252 72 255 258 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
266 264 254 252 252 72 265 256 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) ) )
267 242 259 266 3eqtr4d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) )
268 16 psrbagaddcl ( ( ( 𝑑f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
269 247 261 268 syl2anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
270 267 269 eqeltrrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
271 229 270 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ∈ ( Base ‘ 𝑅 ) )
272 10 35 224 228 271 ringcld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) )
273 10 24 222 223 272 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
274 disjdifr ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) = ∅
275 274 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) = ∅ )
276 simpl ( ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) → 𝑘r𝑑 )
277 276 a1i ( 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) → 𝑘r𝑑 ) )
278 277 ss2rabi { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 }
279 278 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
280 undifr ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↔ ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
281 279 280 sylib ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
282 281 eqcomd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } = ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) )
283 10 11 14 221 273 275 282 gsummptfidmsplit ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
284 eldifi ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
285 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑋𝐼 )
286 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( 𝑑𝑋 ) = ( 𝑑𝑋 ) )
287 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( 𝑢𝑋 ) = ( 𝑢𝑋 ) )
288 253 254 252 252 72 286 287 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) = ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) )
289 285 288 mpdan ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) = ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) )
290 284 289 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) = ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) )
291 290 oveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑢𝑋 ) + ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ) = ( ( 𝑢𝑋 ) + ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) ) )
292 234 285 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑢𝑋 ) ∈ ℕ0 )
293 284 292 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( 𝑢𝑋 ) ∈ ℕ0 )
294 293 nn0cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( 𝑢𝑋 ) ∈ ℂ )
295 31 nn0cnd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℂ )
296 295 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( 𝑑𝑋 ) ∈ ℂ )
297 294 296 pncan3d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑢𝑋 ) + ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) ) = ( 𝑑𝑋 ) )
298 291 297 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑢𝑋 ) + ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ) = ( 𝑑𝑋 ) )
299 298 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢𝑋 ) + ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑑𝑋 ) + 1 ) )
300 249 285 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ∈ ℕ0 )
301 284 300 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ∈ ℕ0 )
302 301 nn0cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ∈ ℂ )
303 1cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → 1 ∈ ℂ )
304 294 302 303 addassd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢𝑋 ) + ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑢𝑋 ) + ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ) )
305 299 304 eqtr3d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑑𝑋 ) + 1 ) = ( ( 𝑢𝑋 ) + ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ) )
306 305 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( 𝑢𝑋 ) + ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
307 26 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → 𝑅 ∈ Mnd )
308 peano2nn0 ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) ∈ ℕ0 → ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 )
309 300 308 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 )
310 284 309 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 )
311 284 272 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) )
312 10 24 11 mulgnn0dir ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑢𝑋 ) ∈ ℕ0 ∧ ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢𝑋 ) + ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
313 307 293 310 311 312 syl13anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢𝑋 ) + ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
314 306 313 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
315 314 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
316 315 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
317 difssd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
318 221 317 ssfid ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∈ Fin )
319 10 24 222 292 272 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
320 284 319 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
321 10 24 222 309 272 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
322 284 321 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) → ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
323 eqid ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
324 eqid ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
325 10 11 14 318 320 322 323 324 gsummptfidmadd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ( +g𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
326 316 325 eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
327 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → 𝑋𝐼 )
328 65 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → 𝑑 Fn 𝐼 )
329 elrabi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
330 329 124 syl ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } → 𝑢 Fn 𝐼 )
331 330 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → 𝑢 Fn 𝐼 )
332 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → 𝐼𝑉 )
333 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∧ 𝑋𝐼 ) → ( 𝑑𝑋 ) = ( 𝑑𝑋 ) )
334 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∧ 𝑋𝐼 ) → ( 𝑢𝑋 ) = ( 𝑢𝑋 ) )
335 328 331 332 332 72 333 334 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∧ 𝑋𝐼 ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) = ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) )
336 327 335 mpdan ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( 𝑑f𝑢 ) ‘ 𝑋 ) = ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) )
337 fveq1 ( 𝑘 = 𝑢 → ( 𝑘𝑋 ) = ( 𝑢𝑋 ) )
338 337 eqeq1d ( 𝑘 = 𝑢 → ( ( 𝑘𝑋 ) = 0 ↔ ( 𝑢𝑋 ) = 0 ) )
339 119 338 anbi12d ( 𝑘 = 𝑢 → ( ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ↔ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) )
340 339 elrab ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↔ ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) )
341 340 simprbi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } → ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) )
342 341 simprd ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } → ( 𝑢𝑋 ) = 0 )
343 342 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( 𝑢𝑋 ) = 0 )
344 343 oveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( 𝑑𝑋 ) − ( 𝑢𝑋 ) ) = ( ( 𝑑𝑋 ) − 0 ) )
345 31 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
346 345 nn0cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( 𝑑𝑋 ) ∈ ℂ )
347 346 subid1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( 𝑑𝑋 ) − 0 ) = ( 𝑑𝑋 ) )
348 336 344 347 3eqtrrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( 𝑑𝑋 ) = ( ( 𝑑f𝑢 ) ‘ 𝑋 ) )
349 348 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( 𝑑𝑋 ) + 1 ) = ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) )
350 349 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
351 350 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
352 351 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
353 326 352 oveq12d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
354 25 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Grp )
355 106 rabex { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∈ V
356 355 difexi ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∈ V
357 356 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∈ V )
358 320 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) )
359 ovex ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ V
360 359 323 fnmpti ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } )
361 360 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) )
362 361 318 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
363 10 104 14 357 358 362 gsumcl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
364 322 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) )
365 ovex ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ V
366 365 324 fnmpti ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } )
367 366 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) )
368 367 318 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
369 10 104 14 357 364 368 gsumcl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
370 106 rabex { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ∈ V
371 370 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ∈ V )
372 278 sseli ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } → 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
373 372 321 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) → ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
374 373 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) : { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ⟶ ( Base ‘ 𝑅 ) )
375 eqid ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
376 365 375 fnmpti ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) }
377 376 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } )
378 221 279 ssfid ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ∈ Fin )
379 377 378 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
380 10 104 14 371 374 379 gsumcl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
381 10 11 354 363 369 380 grpassd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) )
382 283 353 381 3eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) )
383 219 382 oveq12d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
384 103 115 383 3eqtr3d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
385 8 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹𝐵 )
386 9 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐺𝐵 )
387 1 2 35 4 16 385 386 21 psrmulval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
388 387 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
389 107 difexi ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∈ V
390 389 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∈ V )
391 eldifi ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
392 39 123 syl ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 )
393 392 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 )
394 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑋𝐼 )
395 393 394 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝑢𝑋 ) ∈ ℕ0 )
396 10 24 27 395 50 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
397 391 396 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
398 397 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ⟶ ( Base ‘ 𝑅 ) )
399 eqid ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
400 359 399 fnmpti ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
401 400 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
402 difssd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
403 23 402 ssfid ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∈ Fin )
404 401 403 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
405 10 104 14 390 398 404 gsumcl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
406 10 11 354 369 380 grpcld ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
407 10 11 354 405 363 406 grpassd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
408 384 388 407 3eqtr4d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) )
409 408 mpteq2dva ( 𝜑 → ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
410 1 2 4 12 8 9 psrmulcl ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
411 1 2 16 5 6 7 410 psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
412 25 grpmgmd ( 𝜑𝑅 ∈ Mgm )
413 1 2 5 412 7 8 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )
414 1 2 4 12 413 9 psrmulcl ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 )
415 1 2 5 412 7 9 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 )
416 1 2 4 12 8 415 psrmulcl ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ∈ 𝐵 )
417 1 2 11 3 414 416 psradd ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) )
418 1 10 16 2 414 psrelbas ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
419 418 ffnd ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
420 1 10 16 2 416 psrelbas ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
421 420 ffnd ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
422 106 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
423 inidm ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∩ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
424 413 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )
425 1 2 35 4 16 424 386 15 psrmulval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ) )
426 355 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∈ V )
427 12 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑅 ∈ Ring )
428 elrabi ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
429 1 10 16 2 413 psrelbas ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
430 429 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
431 430 ffvelcdmda ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) )
432 428 431 sylan2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) )
433 42 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
434 16 243 psrbagconcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑏 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
435 434 adantll ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑏 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
436 elrabi ( ( 𝑑f𝑏 ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → ( 𝑑f𝑏 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
437 435 436 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑑f𝑏 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
438 433 437 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ∈ ( Base ‘ 𝑅 ) )
439 10 35 427 432 438 ringcld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ∈ ( Base ‘ 𝑅 ) )
440 439 fmpttd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) : { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ⟶ ( Base ‘ 𝑅 ) )
441 ovex ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ∈ V
442 eqid ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) )
443 441 442 fnmpti ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 }
444 443 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
445 444 221 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) finSupp ( 0g𝑅 ) )
446 eqid ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
447 df-of f + = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) )
448 vex 𝑢 ∈ V
449 448 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑢 ∈ V )
450 ssv { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ⊆ V
451 450 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ⊆ V )
452 ssv { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V
453 452 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V )
454 447 449 451 453 elimampo ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ) )
455 454 biimpa ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) )
456 elrabi ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑚 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
457 16 psrbagf ( 𝑚 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑚 : 𝐼 ⟶ ℕ0 )
458 457 ffund ( 𝑚 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → Fun 𝑚 )
459 456 458 syl ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → Fun 𝑚 )
460 459 funfnd ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑚 Fn dom 𝑚 )
461 460 ad2antrl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 Fn dom 𝑚 )
462 velsn ( 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
463 funmpt Fun ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) )
464 funeq ( 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( Fun 𝑛 ↔ Fun ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
465 463 464 mpbiri ( 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → Fun 𝑛 )
466 465 funfnd ( 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → 𝑛 Fn dom 𝑛 )
467 462 466 sylbi ( 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 Fn dom 𝑛 )
468 467 ad2antll ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑛 Fn dom 𝑛 )
469 vex 𝑚 ∈ V
470 469 dmex dom 𝑚 ∈ V
471 470 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑚 ∈ V )
472 vex 𝑛 ∈ V
473 472 dmex dom 𝑛 ∈ V
474 473 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑛 ∈ V )
475 eqid ( dom 𝑚 ∩ dom 𝑛 ) = ( dom 𝑚 ∩ dom 𝑛 )
476 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚𝑜 ) = ( 𝑚𝑜 ) )
477 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛𝑜 ) = ( 𝑛𝑜 ) )
478 461 468 471 474 475 476 477 offval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) )
479 478 eqeq2d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ) )
480 elsni ( 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
481 480 oveq2d ( 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑚f + 𝑛 ) = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
482 481 eqeq2d ( 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
483 482 ad2antll ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
484 5 ad3antrrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐼𝑉 )
485 456 457 syl ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑚 : 𝐼 ⟶ ℕ0 )
486 485 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 )
487 131 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 )
488 nn0cn ( 𝑞 ∈ ℕ0𝑞 ∈ ℂ )
489 nn0cn ( 𝑟 ∈ ℕ0𝑟 ∈ ℂ )
490 nn0cn ( 𝑠 ∈ ℕ0𝑠 ∈ ℂ )
491 addsubass ( ( 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟𝑠 ) ) )
492 488 489 490 491 syl3an ( ( 𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0 ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟𝑠 ) ) )
493 492 adantl ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ ( 𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟𝑠 ) ) )
494 484 486 487 487 493 caofass ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑚f + ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
495 simpr ( ( 𝜑𝑖𝐼 ) → 𝑖𝐼 )
496 56 a1i ( ( 𝜑𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0 )
497 68 76 495 496 fvmptd3 ( ( 𝜑𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
498 133 133 5 5 72 497 497 offval ( 𝜑 → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
499 498 oveq2d ( 𝜑 → ( 𝑚f + ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) )
500 499 ad3antrrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) )
501 237 subidi ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) = 0
502 501 mpteq2i ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ 0 )
503 fconstmpt ( 𝐼 × { 0 } ) = ( 𝑖𝐼 ↦ 0 )
504 502 503 eqtr4i ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝐼 × { 0 } )
505 504 oveq2i ( 𝑚f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚f + ( 𝐼 × { 0 } ) )
506 0zd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 0 ∈ ℤ )
507 488 addridd ( 𝑞 ∈ ℕ0 → ( 𝑞 + 0 ) = 𝑞 )
508 507 adantl ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑞 ∈ ℕ0 ) → ( 𝑞 + 0 ) = 𝑞 )
509 484 486 506 508 caofid0r ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝐼 × { 0 } ) ) = 𝑚 )
510 505 509 eqtrid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 )
511 494 500 510 3eqtrd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 )
512 simpr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
513 511 512 eqeltrd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
514 oveq1 ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
515 514 eleq1d ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↔ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
516 513 515 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
517 516 adantrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
518 483 517 sylbid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
519 479 518 sylbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
520 519 rexlimdvva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
521 455 520 mpd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
522 simpr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
523 5 mptexd ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V )
524 elsng ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
525 523 524 syl ( 𝜑 → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
526 68 525 mpbiri ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } )
527 526 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } )
528 447 mpofun Fun ∘f +
529 528 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → Fun ∘f + )
530 xpss ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ ( V × V )
531 470 inex1 ( dom 𝑚 ∩ dom 𝑛 ) ∈ V
532 531 mptex ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ∈ V
533 532 rgen2w 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ∈ V
534 447 dmmpoga ( ∀ 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ∈ V → dom ∘f + = ( V × V ) )
535 533 534 mp1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → dom ∘f + = ( V × V ) )
536 530 535 sseqtrrid ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ dom ∘f + )
537 522 527 529 536 elovimad ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) )
538 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝐼𝑉 )
539 elrabi ( 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
540 16 psrbagf ( 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑣 : 𝐼 ⟶ ℕ0 )
541 539 540 syl ( 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → 𝑣 : 𝐼 ⟶ ℕ0 )
542 541 ad2antll ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑣 : 𝐼 ⟶ ℕ0 )
543 131 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 )
544 492 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ ( 𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟𝑠 ) ) )
545 538 542 543 543 544 caofass ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑣f + ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
546 133 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
547 78 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
548 546 546 538 538 72 547 547 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
549 548 oveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑣f + ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) )
550 504 oveq2i ( 𝑣f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣f + ( 𝐼 × { 0 } ) )
551 0zd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 0 ∈ ℤ )
552 nn0cn ( 𝑝 ∈ ℕ0𝑝 ∈ ℂ )
553 552 addridd ( 𝑝 ∈ ℕ0 → ( 𝑝 + 0 ) = 𝑝 )
554 553 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 )
555 538 542 551 554 caofid0r ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑣f + ( 𝐼 × { 0 } ) ) = 𝑣 )
556 550 555 eqtrid ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑣f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑣 )
557 545 549 556 3eqtrrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑣 = ( ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
558 oveq1 ( 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
559 558 eqeq2d ( 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
560 557 559 syl5ibrcom ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
561 18 ad3antrrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
562 16 psrbagaddcl ( ( 𝑚 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
563 456 561 562 syl2an2 ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
564 16 psrbagf ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
565 563 564 syl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
566 565 adantrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 )
567 feq1 ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 : 𝐼 ⟶ ℕ0 ↔ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) )
568 566 567 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) )
569 483 568 sylbid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) → 𝑢 : 𝐼 ⟶ ℕ0 ) )
570 479 569 sylbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) )
571 570 rexlimdvva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) )
572 455 571 mpd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 )
573 572 adantrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑢 : 𝐼 ⟶ ℕ0 )
574 573 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℕ0 )
575 574 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℂ )
576 237 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ )
577 575 576 npcand ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢𝑖 ) )
578 577 mpteq2dva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑖𝐼 ↦ ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( 𝑢𝑖 ) ) )
579 573 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑢 Fn 𝐼 )
580 579 546 538 538 72 offn ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
581 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
582 579 546 538 538 72 581 547 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) ∧ 𝑖𝐼 ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
583 580 546 538 538 72 582 547 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
584 573 feqmptd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑢 = ( 𝑖𝐼 ↦ ( 𝑢𝑖 ) ) )
585 578 583 584 3eqtr4rd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → 𝑢 = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
586 oveq1 ( 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
587 586 eqeq2d ( 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
588 585 587 syl5ibrcom ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
589 560 588 impbid ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) → ( 𝑢 = ( 𝑣f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
590 446 521 537 589 f1o2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) –1-1-onto→ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
591 10 104 14 426 440 445 590 gsumf1o ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
592 553 adantl ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 )
593 484 486 506 592 caofid0r ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝐼 × { 0 } ) ) = 𝑚 )
594 505 593 eqtrid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑖𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 )
595 494 500 594 3eqtrd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 )
596 595 512 eqeltrd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
597 596 515 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
598 597 adantrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
599 483 598 sylbid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
600 479 599 sylbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
601 600 rexlimdvva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) )
602 455 601 mpd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
603 eqidd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
604 eqidd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) )
605 fveq2 ( 𝑏 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
606 oveq2 ( 𝑏 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑑f𝑏 ) = ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
607 606 fveq2d ( 𝑏 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝐺 ‘ ( 𝑑f𝑏 ) ) = ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
608 605 607 oveq12d ( 𝑏 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
609 602 603 604 608 fmptco ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) )
610 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐼𝑉 )
611 6 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ CRing )
612 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑋𝐼 )
613 8 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹𝐵 )
614 elrabi ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
615 602 614 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
616 1 2 16 610 611 612 613 615 psdcoef ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
617 572 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 Fn 𝐼 )
618 131 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 )
619 618 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
620 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋𝐼 ) → ( 𝑢𝑋 ) = ( 𝑢𝑋 ) )
621 iftrue ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 )
622 1ex 1 ∈ V
623 621 68 622 fvmpt ( 𝑋𝐼 → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 )
624 623 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 )
625 617 619 610 610 72 620 624 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋𝐼 ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢𝑋 ) − 1 ) )
626 612 625 mpdan ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢𝑋 ) − 1 ) )
627 626 oveq1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( ( ( 𝑢𝑋 ) − 1 ) + 1 ) )
628 nn0sscn 0 ⊆ ℂ
629 628 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ℕ0 ⊆ ℂ )
630 572 629 fssd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℂ )
631 630 612 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢𝑋 ) ∈ ℂ )
632 1cnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 1 ∈ ℂ )
633 631 632 npcand ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢𝑋 ) − 1 ) + 1 ) = ( 𝑢𝑋 ) )
634 627 633 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( 𝑢𝑋 ) )
635 617 619 610 610 72 offn ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
636 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
637 78 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
638 617 619 610 610 72 636 637 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
639 572 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℕ0 )
640 639 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℂ )
641 237 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ )
642 640 641 npcand ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢𝑖 ) )
643 610 635 619 617 638 637 642 offveq ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑢 )
644 643 fveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹 ‘ ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹𝑢 ) )
645 634 644 oveq12d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( 𝐹𝑢 ) ) )
646 616 645 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( 𝐹𝑢 ) ) )
647 28 ad2antlr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 : 𝐼 ⟶ ℕ0 )
648 647 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
649 648 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℂ )
650 649 640 641 subsub3d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( ( 𝑑𝑖 ) − ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) )
651 650 mpteq2dva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑖𝐼 ↦ ( ( 𝑑𝑖 ) − ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) ) )
652 65 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 Fn 𝐼 )
653 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
654 652 635 610 610 72 653 638 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖𝐼 ↦ ( ( 𝑑𝑖 ) − ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) )
655 652 619 610 610 72 offn ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
656 652 619 610 610 72 653 637 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
657 655 617 610 610 72 656 636 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) = ( 𝑖𝐼 ↦ ( ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢𝑖 ) ) ) )
658 651 654 657 3eqtr4d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) )
659 658 fveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) )
660 646 659 oveq12d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( 𝐹𝑢 ) ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) )
661 12 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Ring )
662 572 612 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢𝑋 ) ∈ ℕ0 )
663 662 nn0zd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢𝑋 ) ∈ ℤ )
664 37 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
665 simpllr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
666 18 ad3antrrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
667 simprl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
668 eqid { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) }
669 16 243 668 psrbagleadd1 ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
670 665 666 667 669 syl3anc ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
671 eleq1 ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) )
672 670 671 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) )
673 483 672 sylbid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) → 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) )
674 479 673 sylbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) )
675 674 rexlimdvva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) )
676 455 675 mpd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
677 elrabi ( 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
678 676 677 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
679 664 678 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) )
680 42 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐺 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
681 21 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
682 16 668 psrbagconcl ( ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
683 681 676 682 syl2anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
684 elrabi ( ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { 𝑙 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑙r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
685 683 684 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
686 680 685 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ∈ ( Base ‘ 𝑅 ) )
687 10 24 35 mulgass2 ( ( 𝑅 ∈ Ring ∧ ( ( 𝑢𝑋 ) ∈ ℤ ∧ ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( 𝐹𝑢 ) ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
688 661 663 679 686 687 syl13anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢𝑋 ) ( .g𝑅 ) ( 𝐹𝑢 ) ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
689 660 688 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
690 689 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f − ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
691 609 690 eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
692 691 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
693 snex { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ V
694 355 693 xpex ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∈ V
695 694 funimaex ( Fun ∘f + → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V )
696 528 695 mp1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V )
697 26 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Mnd )
698 10 35 661 679 686 ringcld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) )
699 10 24 697 662 698 mulgnn0cld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
700 eqid ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
701 359 700 fnmpti ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) }
702 701 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
703 702 23 113 fndmfifsupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
704 460 ad2antlr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑚 Fn dom 𝑚 )
705 467 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑛 Fn dom 𝑛 )
706 470 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑚 ∈ V )
707 473 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑛 ∈ V )
708 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚𝑜 ) = ( 𝑚𝑜 ) )
709 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛𝑜 ) = ( 𝑛𝑜 ) )
710 704 705 706 707 475 708 709 offval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑚f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) )
711 710 eqeq2d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ) )
712 711 rexbidva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚f + 𝑛 ) ↔ ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ) )
713 18 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
714 oveq2 ( 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑚f + 𝑛 ) = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
715 714 eqeq2d ( 𝑛 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
716 715 rexsng ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
717 713 716 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚f + 𝑛 ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
718 712 717 bitr3d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ↔ 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
719 718 rexbidva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∃ 𝑛 ∈ { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚𝑜 ) + ( 𝑛𝑜 ) ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
720 breq1 ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
721 breq1 ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘r𝑑 ↔ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ) )
722 fveq1 ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘𝑋 ) = ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) )
723 722 eqeq1d ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘𝑋 ) = 0 ↔ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) )
724 721 723 anbi12d ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ↔ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ∧ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) )
725 724 notbid ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ↔ ¬ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ∧ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) )
726 720 725 anbi12d ( 𝑘 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) ↔ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ∧ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) )
727 456 713 562 syl2an2 ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
728 simplr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
729 simpr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
730 16 243 44 psrbagleadd1 ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
731 728 713 729 730 syl3anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
732 720 elrab ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
733 732 simprbi ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
734 731 733 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
735 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑋𝐼 )
736 485 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 )
737 736 ffnd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑚 Fn 𝐼 )
738 133 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
739 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐼𝑉 )
740 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( 𝑚𝑋 ) = ( 𝑚𝑋 ) )
741 623 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 )
742 737 738 739 739 72 740 741 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∧ 𝑋𝐼 ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚𝑋 ) + 1 ) )
743 735 742 mpdan ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚𝑋 ) + 1 ) )
744 736 735 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚𝑋 ) ∈ ℕ0 )
745 nn0p1nn ( ( 𝑚𝑋 ) ∈ ℕ0 → ( ( 𝑚𝑋 ) + 1 ) ∈ ℕ )
746 744 745 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚𝑋 ) + 1 ) ∈ ℕ )
747 743 746 eqeltrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ∈ ℕ )
748 747 nnne0d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ≠ 0 )
749 748 neneqd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ¬ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 )
750 749 intnand ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ¬ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ∧ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) )
751 734 750 jca ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ∧ ( ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) )
752 726 727 751 elrabd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } )
753 eleq1 ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ↔ ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) )
754 752 753 syl5ibrcom ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) )
755 breq1 ( 𝑘 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘r𝑑 ↔ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ) )
756 elrabi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
757 756 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
758 131 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 )
759 756 123 syl ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 )
760 759 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 )
761 7 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑋𝐼 )
762 760 761 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢𝑋 ) ∈ ℕ0 )
763 339 notbid ( 𝑘 = 𝑢 → ( ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ↔ ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) )
764 118 763 anbi12d ( 𝑘 = 𝑢 → ( ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) ↔ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) ) )
765 764 elrab ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ↔ ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) ) )
766 765 simprbi ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) ) )
767 766 simpld ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
768 767 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
769 768 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
770 756 124 syl ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → 𝑢 Fn 𝐼 )
771 770 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢 Fn 𝐼 )
772 771 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝑢 Fn 𝐼 )
773 21 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
774 88 ffnd ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
775 773 774 syl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
776 775 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
777 5 ad3antrrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝐼𝑉 )
778 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
779 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) )
780 772 776 777 777 72 778 779 ofrfval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) )
781 769 780 mpbid ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) )
782 781 r19.21bi ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ≤ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) )
783 782 adantr ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( 𝑢𝑖 ) ≤ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) )
784 65 ad3antrrr ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) → 𝑑 Fn 𝐼 )
785 69 a1i ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
786 5 ad4antr ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) → 𝐼𝑉 )
787 eqidd ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
788 78 adantl ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
789 784 785 786 786 72 787 788 ofval ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝑋 ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
790 789 an32s ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
791 158 adantl ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 )
792 791 oveq2d ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑𝑖 ) + 0 ) )
793 29 ad2antrr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝑑 : 𝐼 ⟶ ℕ0 )
794 793 ffvelcdmda ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
795 794 adantr ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
796 795 nn0cnd ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( 𝑑𝑖 ) ∈ ℂ )
797 796 addridd ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( ( 𝑑𝑖 ) + 0 ) = ( 𝑑𝑖 ) )
798 790 792 797 3eqtrd ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( 𝑑𝑖 ) )
799 783 798 breqtrd ( ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) ∧ 𝑖𝑋 ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) )
800 simpr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ( 𝑢𝑋 ) = 0 )
801 29 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
802 801 761 ffvelcdmd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
803 802 nn0ge0d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 0 ≤ ( 𝑑𝑋 ) )
804 803 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 0 ≤ ( 𝑑𝑋 ) )
805 800 804 eqbrtrd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) )
806 805 adantr ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑢𝑋 ) ≤ ( 𝑑𝑋 ) )
807 175 799 806 pm2.61ne ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) )
808 807 ralrimiva ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) )
809 65 adantr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑑 Fn 𝐼 )
810 809 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝑑 Fn 𝐼 )
811 eqidd ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
812 772 810 777 777 72 778 811 ofrfval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → ( 𝑢r𝑑 ↔ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( 𝑑𝑖 ) ) )
813 808 812 mpbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ ( 𝑢𝑋 ) = 0 ) → 𝑢r𝑑 )
814 813 ex ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑢𝑋 ) = 0 → 𝑢r𝑑 ) )
815 766 simprd ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } → ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) )
816 815 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) )
817 imnan ( ( 𝑢r𝑑 → ¬ ( 𝑢𝑋 ) = 0 ) ↔ ¬ ( 𝑢r𝑑 ∧ ( 𝑢𝑋 ) = 0 ) )
818 816 817 sylibr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢r𝑑 → ¬ ( 𝑢𝑋 ) = 0 ) )
819 818 con2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑢𝑋 ) = 0 → ¬ 𝑢r𝑑 ) )
820 814 819 pm2.65d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢𝑋 ) = 0 )
821 820 neqned ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢𝑋 ) ≠ 0 )
822 762 821 191 sylanbrc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢𝑋 ) ∈ ℕ )
823 822 nnge1d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 1 ≤ ( 𝑢𝑋 ) )
824 823 adantr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → 1 ≤ ( 𝑢𝑋 ) )
825 173 breq2d ( 𝑖 = 𝑋 → ( 1 ≤ ( 𝑢𝑖 ) ↔ 1 ≤ ( 𝑢𝑋 ) ) )
826 824 825 syl5ibrcom ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑖 = 𝑋 → 1 ≤ ( 𝑢𝑖 ) ) )
827 826 imp ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) ∧ 𝑖 = 𝑋 ) → 1 ≤ ( 𝑢𝑖 ) )
828 760 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℕ0 )
829 828 nn0ge0d ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → 0 ≤ ( 𝑢𝑖 ) )
830 829 adantr ( ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 = 𝑋 ) → 0 ≤ ( 𝑢𝑖 ) )
831 827 830 ifpimpda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢𝑖 ) , 0 ≤ ( 𝑢𝑖 ) ) )
832 brif1 ( if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢𝑖 ) ↔ if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢𝑖 ) , 0 ≤ ( 𝑢𝑖 ) ) )
833 831 832 sylibr ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢𝑖 ) )
834 833 ralrimiva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ∀ 𝑖𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢𝑖 ) )
835 69 a1i ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 )
836 5 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝐼𝑉 )
837 78 adantl ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) )
838 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) = ( 𝑢𝑖 ) )
839 835 771 836 836 72 837 838 ofrfval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r𝑢 ↔ ∀ 𝑖𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢𝑖 ) ) )
840 834 839 mpbird ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r𝑢 )
841 16 psrbagcon ( ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r𝑢 ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑢 ) )
842 757 758 840 841 syl3anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑢 ) )
843 842 simpld ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
844 eqidd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) = ( 𝑑𝑖 ) )
845 809 835 836 836 72 844 837 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
846 771 775 836 836 72 838 845 ofrfval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
847 768 846 mpbid ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ∀ 𝑖𝐼 ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
848 847 r19.21bi ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
849 828 nn0red ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℝ )
850 60 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ )
851 801 ffvelcdmda ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℕ0 )
852 851 nn0red ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑑𝑖 ) ∈ ℝ )
853 849 850 852 lesubaddd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑𝑖 ) ↔ ( 𝑢𝑖 ) ≤ ( ( 𝑑𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
854 848 853 mpbird ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑𝑖 ) )
855 854 ralrimiva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ∀ 𝑖𝐼 ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑𝑖 ) )
856 771 835 836 836 72 offn ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 )
857 771 835 836 836 72 838 837 ofval ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) )
858 856 809 836 836 72 857 844 ofrfval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 ↔ ∀ 𝑖𝐼 ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑𝑖 ) ) )
859 855 858 mpbird ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r𝑑 )
860 755 843 859 elrabd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } )
861 828 nn0cnd ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( 𝑢𝑖 ) ∈ ℂ )
862 237 a1i ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ )
863 861 862 npcand ( ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) ∧ 𝑖𝐼 ) → ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢𝑖 ) )
864 863 mpteq2dva ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( 𝑖𝐼 ↦ ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( 𝑢𝑖 ) ) )
865 856 835 836 836 72 857 837 offval ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖𝐼 ↦ ( ( ( 𝑢𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) )
866 760 feqmptd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢 = ( 𝑖𝐼 ↦ ( 𝑢𝑖 ) ) )
867 864 865 866 3eqtr4rd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) → 𝑢 = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
868 oveq1 ( 𝑚 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
869 868 eqeq2d ( 𝑚 = ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
870 754 860 867 869 rspceb2dv ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } 𝑢 = ( 𝑚f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) )
871 454 719 870 3bitrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } ) )
872 871 eqrdv ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) } )
873 difrab ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) ) }
874 872 873 eqtr4di ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) )
875 difssd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
876 874 875 eqsstrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } )
877 703 876 113 fmptssfisupp ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) finSupp ( 0g𝑅 ) )
878 difss ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 }
879 disjdif ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) = ∅
880 ssdisj ( ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∧ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) = ∅ ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) = ∅ )
881 878 879 880 mp2an ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ) = ∅
882 881 ineqcomi ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) = ∅
883 882 a1i ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∩ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) = ∅ )
884 279 99 psdmullem ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∪ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) = ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) )
885 874 884 eqtr4d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ∪ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ) )
886 10 104 11 14 696 699 877 883 885 gsumsplit2 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
887 692 886 eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r𝑅 ) ( 𝐺 ‘ ( 𝑑f𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } × { ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢f − ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
888 425 591 887 3eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
889 415 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 )
890 1 2 35 4 16 385 889 15 psrmulval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) ) ) ) )
891 6 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝑅 ∈ CRing )
892 9 ad2antrr ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → 𝐺𝐵 )
893 1 2 16 252 891 285 892 247 psdcoef ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
894 267 fveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) )
895 894 oveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f𝑢 ) ∘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) )
896 893 895 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) )
897 896 oveq2d ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) ) = ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
898 309 nn0zd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ )
899 10 24 35 mulgass3 ( ( 𝑅 ∈ Ring ∧ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ ( 𝐹𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
900 224 898 228 271 899 syl13anc ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
901 897 900 eqtrd ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) → ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) ) = ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) )
902 901 mpteq2dva ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) )
903 902 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( 𝐹𝑢 ) ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑f𝑢 ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) )
904 10 11 14 221 321 275 282 gsummptfidmsplit ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
905 890 903 904 3eqtrd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) )
906 419 421 422 422 423 888 905 offval ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
907 417 906 eqtrd ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r ≤ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( 𝑢𝑋 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ( +g𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑘r𝑑 } ∖ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ( +g𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( 𝑘r𝑑 ∧ ( 𝑘𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑f𝑢 ) ‘ 𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐹𝑢 ) ( .r𝑅 ) ( 𝐺 ‘ ( ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f𝑢 ) ) ) ) ) ) ) ) ) )
908 409 411 907 3eqtr4d ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) )