Metamath Proof Explorer


Theorem psdmullem

Description: Lemma for psdmul . Transitive law for union of class difference. (Contributed by SN, 5-May-2025)

Ref Expression
Hypotheses psdmullem.cb ( 𝜑𝐶𝐵 )
psdmullem.ba ( 𝜑𝐵𝐴 )
Assertion psdmullem ( 𝜑 → ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐶 ) ) = ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 psdmullem.cb ( 𝜑𝐶𝐵 )
2 psdmullem.ba ( 𝜑𝐵𝐴 )
3 undif3 ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐶 ) ) = ( ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∖ ( 𝐶 ∖ ( 𝐴𝐵 ) ) )
4 undifr ( 𝐵𝐴 ↔ ( ( 𝐴𝐵 ) ∪ 𝐵 ) = 𝐴 )
5 2 4 sylib ( 𝜑 → ( ( 𝐴𝐵 ) ∪ 𝐵 ) = 𝐴 )
6 difdif2 ( 𝐶 ∖ ( 𝐴𝐵 ) ) = ( ( 𝐶𝐴 ) ∪ ( 𝐶𝐵 ) )
7 1 2 sstrd ( 𝜑𝐶𝐴 )
8 ssdif0 ( 𝐶𝐴 ↔ ( 𝐶𝐴 ) = ∅ )
9 7 8 sylib ( 𝜑 → ( 𝐶𝐴 ) = ∅ )
10 dfss2 ( 𝐶𝐵 ↔ ( 𝐶𝐵 ) = 𝐶 )
11 1 10 sylib ( 𝜑 → ( 𝐶𝐵 ) = 𝐶 )
12 9 11 uneq12d ( 𝜑 → ( ( 𝐶𝐴 ) ∪ ( 𝐶𝐵 ) ) = ( ∅ ∪ 𝐶 ) )
13 0un ( ∅ ∪ 𝐶 ) = 𝐶
14 12 13 eqtrdi ( 𝜑 → ( ( 𝐶𝐴 ) ∪ ( 𝐶𝐵 ) ) = 𝐶 )
15 6 14 eqtrid ( 𝜑 → ( 𝐶 ∖ ( 𝐴𝐵 ) ) = 𝐶 )
16 5 15 difeq12d ( 𝜑 → ( ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∖ ( 𝐶 ∖ ( 𝐴𝐵 ) ) ) = ( 𝐴𝐶 ) )
17 3 16 eqtrid ( 𝜑 → ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐶 ) ) = ( 𝐴𝐶 ) )