Step |
Hyp |
Ref |
Expression |
1 |
|
psdmullem.cb |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
2 |
|
psdmullem.ba |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
undif3 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∖ ( 𝐶 ∖ ( 𝐴 ∖ 𝐵 ) ) ) |
4 |
|
undifr |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = 𝐴 ) |
5 |
2 4
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = 𝐴 ) |
6 |
|
difdif2 |
⊢ ( 𝐶 ∖ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐶 ∩ 𝐵 ) ) |
7 |
1 2
|
sstrd |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
8 |
|
ssdif0 |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∖ 𝐴 ) = ∅ ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝐴 ) = ∅ ) |
10 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐶 ∩ 𝐵 ) = 𝐶 ) |
11 |
1 10
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐵 ) = 𝐶 ) |
12 |
9 11
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐶 ∩ 𝐵 ) ) = ( ∅ ∪ 𝐶 ) ) |
13 |
|
0un |
⊢ ( ∅ ∪ 𝐶 ) = 𝐶 |
14 |
12 13
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐶 ∩ 𝐵 ) ) = 𝐶 ) |
15 |
6 14
|
eqtrid |
⊢ ( 𝜑 → ( 𝐶 ∖ ( 𝐴 ∖ 𝐵 ) ) = 𝐶 ) |
16 |
5 15
|
difeq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∖ ( 𝐶 ∖ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐴 ∖ 𝐶 ) ) |
17 |
3 16
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐴 ∖ 𝐶 ) ) |