Metamath Proof Explorer


Theorem psdvsca

Description: The derivative of a scaled power series is the scaled derivative. (Contributed by SN, 12-Apr-2025)

Ref Expression
Hypotheses psdvsca.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdvsca.b 𝐵 = ( Base ‘ 𝑆 )
psdvsca.m · = ( ·𝑠𝑆 )
psdvsca.k 𝐾 = ( Base ‘ 𝑅 )
psdvsca.i ( 𝜑𝐼𝑉 )
psdvsca.r ( 𝜑𝑅 ∈ CRing )
psdvsca.x ( 𝜑𝑋𝐼 )
psdvsca.f ( 𝜑𝐹𝐵 )
psdvsca.c ( 𝜑𝐶𝐾 )
Assertion psdvsca ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) = ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 psdvsca.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdvsca.b 𝐵 = ( Base ‘ 𝑆 )
3 psdvsca.m · = ( ·𝑠𝑆 )
4 psdvsca.k 𝐾 = ( Base ‘ 𝑅 )
5 psdvsca.i ( 𝜑𝐼𝑉 )
6 psdvsca.r ( 𝜑𝑅 ∈ CRing )
7 psdvsca.x ( 𝜑𝑋𝐼 )
8 psdvsca.f ( 𝜑𝐹𝐵 )
9 psdvsca.c ( 𝜑𝐶𝐾 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
12 6 crngringd ( 𝜑𝑅 ∈ Ring )
13 ringmgm ( 𝑅 ∈ Ring → 𝑅 ∈ Mgm )
14 12 13 syl ( 𝜑𝑅 ∈ Mgm )
15 1 3 4 2 12 9 8 psrvscacl ( 𝜑 → ( 𝐶 · 𝐹 ) ∈ 𝐵 )
16 1 2 5 14 7 15 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) ∈ 𝐵 )
17 1 10 11 2 16 psrelbas ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
18 17 ffnd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
19 1 2 5 14 7 8 psdcl ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )
20 1 3 4 2 12 9 19 psrvscacl ( 𝜑 → ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ∈ 𝐵 )
21 1 10 11 2 20 psrelbas ( 𝜑 → ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
22 21 ffnd ( 𝜑 → ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
23 12 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring )
24 11 psrbagf ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 )
25 24 adantl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 )
26 7 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑋𝐼 )
27 25 26 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑𝑋 ) ∈ ℕ0 )
28 peano2nn0 ( ( 𝑑𝑋 ) ∈ ℕ0 → ( ( 𝑑𝑋 ) + 1 ) ∈ ℕ0 )
29 28 nn0zd ( ( 𝑑𝑋 ) ∈ ℕ0 → ( ( 𝑑𝑋 ) + 1 ) ∈ ℤ )
30 27 29 syl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑑𝑋 ) + 1 ) ∈ ℤ )
31 9 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐶𝐾 )
32 1 4 11 2 8 psrelbas ( 𝜑𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ 𝐾 )
33 32 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ 𝐾 )
34 simpr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
35 11 psrbagsn ( 𝐼𝑉 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
36 5 35 syl ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
37 36 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
38 11 psrbagaddcl ( ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
39 34 37 38 syl2anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
40 33 39 ffvelcdmd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ 𝐾 )
41 eqid ( .g𝑅 ) = ( .g𝑅 )
42 eqid ( .r𝑅 ) = ( .r𝑅 )
43 4 41 42 mulgass3 ( ( 𝑅 ∈ Ring ∧ ( ( ( 𝑑𝑋 ) + 1 ) ∈ ℤ ∧ 𝐶𝐾 ∧ ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ∈ 𝐾 ) ) → ( 𝐶 ( .r𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐶 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
44 23 30 31 40 43 syl13anc ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐶 ( .r𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐶 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
45 5 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
46 6 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing )
47 8 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐹𝐵 )
48 1 2 11 45 46 26 47 34 psdcoef ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑑 ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
49 48 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐶 ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑑 ) ) = ( 𝐶 ( .r𝑅 ) ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
50 1 3 4 2 42 11 31 47 39 psrvscaval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐶 · 𝐹 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐶 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
51 50 oveq2d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐶 · 𝐹 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐶 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
52 44 49 51 3eqtr4rd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐶 · 𝐹 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝐶 ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑑 ) ) )
53 15 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐶 · 𝐹 ) ∈ 𝐵 )
54 1 2 11 45 46 26 53 34 psdcoef ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) ‘ 𝑑 ) = ( ( ( 𝑑𝑋 ) + 1 ) ( .g𝑅 ) ( ( 𝐶 · 𝐹 ) ‘ ( 𝑑f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
55 19 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 )
56 1 3 4 2 42 11 31 55 34 psrvscaval ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ‘ 𝑑 ) = ( 𝐶 ( .r𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑑 ) ) )
57 52 54 56 3eqtr4d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) ‘ 𝑑 ) = ( ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ‘ 𝑑 ) )
58 18 22 57 eqfnfvd ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 · 𝐹 ) ) = ( 𝐶 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) )