Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
6 |
|
psercn.m |
⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) |
7 |
|
sumex |
⊢ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V |
8 |
7
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V |
9 |
2
|
fnmpt |
⊢ ( ∀ 𝑦 ∈ 𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ V → 𝐹 Fn 𝑆 ) |
10 |
8 9
|
mp1i |
⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
11 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
12 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
13 |
12
|
fdmi |
⊢ dom abs = ℂ |
14 |
11 13
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
15 |
5 14
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
17 |
16
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
18 |
|
0cn |
⊢ 0 ∈ ℂ |
19 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
20 |
19
|
cnmetdval |
⊢ ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) ) |
21 |
18 17 20
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) ) |
22 |
|
abssub |
⊢ ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) ) |
23 |
18 17 22
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) ) |
24 |
17
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 − 0 ) = 𝑎 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ ( 𝑎 − 0 ) ) = ( abs ‘ 𝑎 ) ) |
26 |
21 23 25
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ 𝑎 ) ) |
27 |
|
breq2 |
⊢ ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) |
28 |
|
breq2 |
⊢ ( ( ( abs ‘ 𝑎 ) + 1 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
30 |
29 5
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
31 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
32 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
33 |
12 31 32
|
mp2b |
⊢ ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
34 |
30 33
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) |
35 |
34
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) |
36 |
|
0re |
⊢ 0 ∈ ℝ |
37 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
38 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
40 |
37 39
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
41 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) |
42 |
36 40 41
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) ) |
43 |
35 42
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) |
44 |
43
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < 𝑅 ) |
46 |
17
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
47 |
|
avglt1 |
⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) |
48 |
46 47
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) ) |
49 |
45 48
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) |
50 |
46
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ) |
52 |
27 28 49 51
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) |
53 |
52 6
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
54 |
26 53
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) |
55 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
56 |
1 2 3 4 5 6
|
psercnlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
57 |
56
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
58 |
57
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
59 |
|
elbl |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) ) |
60 |
55 18 58 59
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) ) |
61 |
17 54 60
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
62 |
61
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
63 |
2
|
reseq1i |
⊢ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
64 |
1 2 3 4 5 56
|
psercnlem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ∧ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) ) |
65 |
64
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
66 |
64
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) |
67 |
65 66
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ) |
68 |
67
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ) |
69 |
63 68
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ) |
70 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
71 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
72 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑦 ) ) |
73 |
72
|
seqeq3d |
⊢ ( 𝑘 = 𝑦 → seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ) |
74 |
73
|
fveq1d |
⊢ ( 𝑘 = 𝑦 → ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) |
75 |
74
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) |
76 |
|
fveq2 |
⊢ ( 𝑠 = 𝑖 → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
77 |
76
|
mpteq2dv |
⊢ ( 𝑠 = 𝑖 → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
78 |
75 77
|
eqtrid |
⊢ ( 𝑠 = 𝑖 → ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
79 |
78
|
cbvmptv |
⊢ ( 𝑠 ∈ ℕ0 ↦ ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑘 ) ) ‘ 𝑠 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
80 |
57
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
81 |
56
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
82 |
1 70 71 4 79 80 81 65
|
psercn2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) ) |
83 |
69 82
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) ) |
84 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ ) |
85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ ) |
86 |
85 61
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) ∈ ℂ ) |
87 |
62 86
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
88 |
87
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
89 |
|
ffnfv |
⊢ ( 𝐹 : 𝑆 ⟶ ℂ ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) ) |
90 |
10 88 89
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
91 |
67 15
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ) |
92 |
|
ssid |
⊢ ℂ ⊆ ℂ |
93 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
94 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
95 |
93
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
96 |
95
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
97 |
93 94 96
|
cncfcn |
⊢ ( ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
98 |
91 92 97
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
99 |
83 98
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
100 |
93
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
101 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
102 |
101
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
103 |
100 91 102
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
104 |
61 103
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
105 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
106 |
105
|
cncnpi |
⊢ ( ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑎 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
107 |
99 104 106
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
108 |
|
cnex |
⊢ ℂ ∈ V |
109 |
108 15
|
ssexi |
⊢ 𝑆 ∈ V |
110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ∈ V ) |
111 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
112 |
100 67 110 111
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
113 |
112
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
114 |
113
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
115 |
107 114
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
116 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
117 |
100 109 116
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top |
118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
119 |
|
df-ss |
⊢ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ↔ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
120 |
67 119
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
121 |
93
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
122 |
121
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) |
123 |
55 18 58 122
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) |
124 |
|
elrestr |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
125 |
100 109 123 124
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
126 |
120 125
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
127 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
128 |
117 126 127
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
129 |
61 128
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) |
130 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
131 |
101
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
132 |
100 15 131
|
mp2an |
⊢ 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
133 |
132 101
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ) ∧ ( 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∧ 𝐹 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
134 |
118 67 129 130 133
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
135 |
115 134
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
136 |
135
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) |
137 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
138 |
95 15 137
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) |
139 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) ) |
140 |
138 95 139
|
mp2an |
⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) |
141 |
90 136 140
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
142 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
143 |
93 142 96
|
cncfcn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
144 |
15 92 143
|
mp2an |
⊢ ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) |
145 |
141 144
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |