Metamath Proof Explorer


Theorem psercn

Description: An infinite series converges to a continuous function on the open disk of radius R , where R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015)

Ref Expression
Hypotheses pserf.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
pserf.f 𝐹 = ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) )
pserf.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
pserf.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
psercn.s 𝑆 = ( abs “ ( 0 [,) 𝑅 ) )
psercn.m 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) )
Assertion psercn ( 𝜑𝐹 ∈ ( 𝑆cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 pserf.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
2 pserf.f 𝐹 = ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) )
3 pserf.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
4 pserf.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
5 psercn.s 𝑆 = ( abs “ ( 0 [,) 𝑅 ) )
6 psercn.m 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) )
7 sumex Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ∈ V
8 7 rgenw 𝑦𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ∈ V
9 2 fnmpt ( ∀ 𝑦𝑆 Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ∈ V → 𝐹 Fn 𝑆 )
10 8 9 mp1i ( 𝜑𝐹 Fn 𝑆 )
11 cnvimass ( abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs
12 absf abs : ℂ ⟶ ℝ
13 12 fdmi dom abs = ℂ
14 11 13 sseqtri ( abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ
15 5 14 eqsstri 𝑆 ⊆ ℂ
16 15 a1i ( 𝜑𝑆 ⊆ ℂ )
17 16 sselda ( ( 𝜑𝑎𝑆 ) → 𝑎 ∈ ℂ )
18 0cn 0 ∈ ℂ
19 eqid ( abs ∘ − ) = ( abs ∘ − )
20 19 cnmetdval ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) )
21 18 17 20 sylancr ( ( 𝜑𝑎𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ ( 0 − 𝑎 ) ) )
22 abssub ( ( 0 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) )
23 18 17 22 sylancr ( ( 𝜑𝑎𝑆 ) → ( abs ‘ ( 0 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 0 ) ) )
24 17 subid1d ( ( 𝜑𝑎𝑆 ) → ( 𝑎 − 0 ) = 𝑎 )
25 24 fveq2d ( ( 𝜑𝑎𝑆 ) → ( abs ‘ ( 𝑎 − 0 ) ) = ( abs ‘ 𝑎 ) )
26 21 23 25 3eqtrd ( ( 𝜑𝑎𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) = ( abs ‘ 𝑎 ) )
27 breq2 ( ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) )
28 breq2 ( ( ( abs ‘ 𝑎 ) + 1 ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) → ( ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) ↔ ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) ) )
29 simpr ( ( 𝜑𝑎𝑆 ) → 𝑎𝑆 )
30 29 5 eleqtrdi ( ( 𝜑𝑎𝑆 ) → 𝑎 ∈ ( abs “ ( 0 [,) 𝑅 ) ) )
31 ffn ( abs : ℂ ⟶ ℝ → abs Fn ℂ )
32 elpreima ( abs Fn ℂ → ( 𝑎 ∈ ( abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) ) )
33 12 31 32 mp2b ( 𝑎 ∈ ( abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) )
34 30 33 sylib ( ( 𝜑𝑎𝑆 ) → ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ) )
35 34 simprd ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) )
36 0re 0 ∈ ℝ
37 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
38 1 3 4 radcnvcl ( 𝜑𝑅 ∈ ( 0 [,] +∞ ) )
39 38 adantr ( ( 𝜑𝑎𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) )
40 37 39 sseldi ( ( 𝜑𝑎𝑆 ) → 𝑅 ∈ ℝ* )
41 elico2 ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) )
42 36 40 41 sylancr ( ( 𝜑𝑎𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) ) )
43 35 42 mpbid ( ( 𝜑𝑎𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑅 ) )
44 43 simp3d ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) < 𝑅 )
45 44 adantr ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < 𝑅 )
46 17 abscld ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ )
47 avglt1 ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) )
48 46 47 sylan ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑅 ↔ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) ) )
49 45 48 mpbid ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) )
50 46 ltp1d ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) )
51 50 adantr ( ( ( 𝜑𝑎𝑆 ) ∧ ¬ 𝑅 ∈ ℝ ) → ( abs ‘ 𝑎 ) < ( ( abs ‘ 𝑎 ) + 1 ) )
52 27 28 49 51 ifbothda ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) < if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) )
53 52 6 breqtrrdi ( ( 𝜑𝑎𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 )
54 26 53 eqbrtrd ( ( 𝜑𝑎𝑆 ) → ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 )
55 cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )
56 1 2 3 4 5 6 psercnlem1 ( ( 𝜑𝑎𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀𝑀 < 𝑅 ) )
57 56 simp1d ( ( 𝜑𝑎𝑆 ) → 𝑀 ∈ ℝ+ )
58 57 rpxrd ( ( 𝜑𝑎𝑆 ) → 𝑀 ∈ ℝ* )
59 elbl ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) )
60 55 18 58 59 mp3an12i ( ( 𝜑𝑎𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↔ ( 𝑎 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑎 ) < 𝑀 ) ) )
61 17 54 60 mpbir2and ( ( 𝜑𝑎𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
62 61 fvresd ( ( 𝜑𝑎𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) = ( 𝐹𝑎 ) )
63 2 reseq1i ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
64 1 2 3 4 5 56 psercnlem2 ( ( 𝜑𝑎𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( abs “ ( 0 [,] 𝑀 ) ) ∧ ( abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) )
65 64 simp2d ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( abs “ ( 0 [,] 𝑀 ) ) )
66 64 simp3d ( ( 𝜑𝑎𝑆 ) → ( abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 )
67 65 66 sstrd ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 )
68 67 resmptd ( ( 𝜑𝑎𝑆 ) → ( ( 𝑦𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) )
69 63 68 syl5eq ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) )
70 eqid ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) )
71 3 adantr ( ( 𝜑𝑎𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ )
72 fveq2 ( 𝑘 = 𝑦 → ( 𝐺𝑘 ) = ( 𝐺𝑦 ) )
73 72 seqeq3d ( 𝑘 = 𝑦 → seq 0 ( + , ( 𝐺𝑘 ) ) = seq 0 ( + , ( 𝐺𝑦 ) ) )
74 73 fveq1d ( 𝑘 = 𝑦 → ( seq 0 ( + , ( 𝐺𝑘 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑠 ) )
75 74 cbvmptv ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑠 ) )
76 fveq2 ( 𝑠 = 𝑖 → ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑠 ) = ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) )
77 76 mpteq2dv ( 𝑠 = 𝑖 → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
78 75 77 syl5eq ( 𝑠 = 𝑖 → ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑘 ) ) ‘ 𝑠 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
79 78 cbvmptv ( 𝑠 ∈ ℕ0 ↦ ( 𝑘 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑘 ) ) ‘ 𝑠 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ ( seq 0 ( + , ( 𝐺𝑦 ) ) ‘ 𝑖 ) ) )
80 57 rpred ( ( 𝜑𝑎𝑆 ) → 𝑀 ∈ ℝ )
81 56 simp3d ( ( 𝜑𝑎𝑆 ) → 𝑀 < 𝑅 )
82 1 70 71 4 79 80 81 65 psercn2 ( ( 𝜑𝑎𝑆 ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺𝑦 ) ‘ 𝑗 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) )
83 69 82 eqeltrd ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) )
84 cncff ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ )
85 83 84 syl ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⟶ ℂ )
86 85 61 ffvelrnd ( ( 𝜑𝑎𝑆 ) → ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ‘ 𝑎 ) ∈ ℂ )
87 62 86 eqeltrrd ( ( 𝜑𝑎𝑆 ) → ( 𝐹𝑎 ) ∈ ℂ )
88 87 ralrimiva ( 𝜑 → ∀ 𝑎𝑆 ( 𝐹𝑎 ) ∈ ℂ )
89 ffnfv ( 𝐹 : 𝑆 ⟶ ℂ ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑎𝑆 ( 𝐹𝑎 ) ∈ ℂ ) )
90 10 88 89 sylanbrc ( 𝜑𝐹 : 𝑆 ⟶ ℂ )
91 67 15 sstrdi ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ )
92 ssid ℂ ⊆ ℂ
93 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
94 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
95 93 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
96 95 toponrestid ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
97 93 94 96 cncfcn ( ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
98 91 92 97 sylancl ( ( 𝜑𝑎𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
99 83 98 eleqtrd ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
100 93 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
101 unicntop ℂ = ( TopOpen ‘ ℂfld )
102 101 restuni ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ℂ ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
103 100 91 102 sylancr ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
104 61 103 eleqtrd ( ( 𝜑𝑎𝑆 ) → 𝑎 ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
105 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
106 105 cncnpi ( ( ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑎 ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
107 99 104 106 syl2anc ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
108 cnex ℂ ∈ V
109 108 15 ssexi 𝑆 ∈ V
110 109 a1i ( ( 𝜑𝑎𝑆 ) → 𝑆 ∈ V )
111 restabs ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆𝑆 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
112 100 67 110 111 mp3an2i ( ( 𝜑𝑎𝑆 ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
113 112 oveq1d ( ( 𝜑𝑎𝑆 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) )
114 113 fveq1d ( ( 𝜑𝑎𝑆 ) → ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
115 107 114 eleqtrrd ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
116 resttop ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top )
117 100 109 116 mp2an ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top
118 117 a1i ( ( 𝜑𝑎𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top )
119 df-ss ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ↔ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
120 67 119 sylib ( ( 𝜑𝑎𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
121 93 cnfldtopn ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) )
122 121 blopn ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) )
123 55 18 58 122 mp3an12i ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) )
124 elrestr ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
125 100 109 123 124 mp3an12i ( ( 𝜑𝑎𝑆 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∩ 𝑆 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
126 120 125 eqeltrrd ( ( 𝜑𝑎𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
127 isopn3i ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
128 117 126 127 sylancr ( ( 𝜑𝑎𝑆 ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) )
129 61 128 eleqtrrd ( ( 𝜑𝑎𝑆 ) → 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) )
130 90 adantr ( ( 𝜑𝑎𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ )
131 101 restuni ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) → 𝑆 = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
132 100 15 131 mp2an 𝑆 = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
133 132 101 cnprest ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ 𝑆 ) ∧ ( 𝑎 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∧ 𝐹 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) )
134 118 67 129 130 133 syl22anc ( ( 𝜑𝑎𝑆 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ↔ ( 𝐹 ↾ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) )
135 115 134 mpbird ( ( 𝜑𝑎𝑆 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
136 135 ralrimiva ( 𝜑 → ∀ 𝑎𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) )
137 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
138 95 15 137 mp2an ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 )
139 cncnp ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) ) )
140 138 95 139 mp2an ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑎𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑎 ) ) )
141 90 136 140 sylanbrc ( 𝜑𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) )
142 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
143 93 142 96 cncfcn ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑆cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) )
144 15 92 143 mp2an ( 𝑆cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) )
145 141 144 eleqtrrdi ( 𝜑𝐹 ∈ ( 𝑆cn→ ℂ ) )