| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pserf.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | pserf.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑆  ↦  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | 
						
							| 3 |  | pserf.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 4 |  | pserf.r | ⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) | 
						
							| 5 |  | pserulm.h | ⊢ 𝐻  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 6 |  | pserulm.m | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 7 |  | pserulm.l | ⊢ ( 𝜑  →  𝑀  <  𝑅 ) | 
						
							| 8 |  | pserulm.y | ⊢ ( 𝜑  →  𝑆  ⊆  ( ◡ abs  “  ( 0 [,] 𝑀 ) ) ) | 
						
							| 9 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 10 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 11 |  | cnvimass | ⊢ ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ⊆  dom  abs | 
						
							| 12 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 13 | 12 | fdmi | ⊢ dom  abs  =  ℂ | 
						
							| 14 | 11 13 | sseqtri | ⊢ ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ⊆  ℂ | 
						
							| 15 | 8 14 | sstrdi | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑆  ⊆  ℂ ) | 
						
							| 17 | 16 | resmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ↾  𝑆 )  =  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 19 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑖 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 | 1 | pserval2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 24 | 23 9 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 29 |  | expcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 30 | 29 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 31 | 28 30 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 32 | 19 31 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 33 | 22 25 32 | fsumser | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | 
						
							| 34 | 33 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 36 | 35 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 38 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 0 ... 𝑖 )  ∈  Fin ) | 
						
							| 39 | 36 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 40 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 41 | 26 19 40 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 42 | 39 39 41 | cnmptc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝐴 ‘ 𝑘 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 43 | 19 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 44 | 35 | expcn | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑘 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑘 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 46 | 35 | mpomulcn | ⊢ ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 48 |  | oveq12 | ⊢ ( ( 𝑢  =  ( 𝐴 ‘ 𝑘 )  ∧  𝑣  =  ( 𝑦 ↑ 𝑘 ) )  →  ( 𝑢  ·  𝑣 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) | 
						
							| 49 | 39 42 45 39 39 47 48 | cnmpt12 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 50 | 35 37 38 49 | fsumcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 51 | 35 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 52 | 50 51 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 53 | 34 52 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 54 |  | rescncf | ⊢ ( 𝑆  ⊆  ℂ  →  ( ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( ℂ –cn→ ℂ )  →  ( ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ↾  𝑆 )  ∈  ( 𝑆 –cn→ ℂ ) ) ) | 
						
							| 55 | 16 53 54 | sylc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑦  ∈  ℂ  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ↾  𝑆 )  ∈  ( 𝑆 –cn→ ℂ ) ) | 
						
							| 56 | 17 55 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( 𝑆 –cn→ ℂ ) ) | 
						
							| 57 | 56 5 | fmptd | ⊢ ( 𝜑  →  𝐻 : ℕ0 ⟶ ( 𝑆 –cn→ ℂ ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 | pserulm | ⊢ ( 𝜑  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 59 | 9 10 57 58 | ulmcn | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆 –cn→ ℂ ) ) |