Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
6 |
|
psercnlem2.i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
7 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
8 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
9 |
8
|
fdmi |
⊢ dom abs = ℂ |
10 |
7 9
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
11 |
5 10
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
13 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
14 |
13
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
15 |
13
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑎 ) ) |
16 |
6
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
6
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
19 |
18
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
20 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ* ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑀 ) ) ) |
21 |
17 19 20
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ↔ ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑎 ) ∧ ( abs ‘ 𝑎 ) < 𝑀 ) ) ) |
22 |
14 15 16 21
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) |
23 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
24 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) ) ) |
25 |
8 23 24
|
mp2b |
⊢ ( 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ↔ ( 𝑎 ∈ ℂ ∧ ( abs ‘ 𝑎 ) ∈ ( 0 [,) 𝑀 ) ) ) |
26 |
13 22 25
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( ◡ abs “ ( 0 [,) 𝑀 ) ) ) |
27 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
28 |
27
|
cnbl0 |
⊢ ( 𝑀 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
29 |
19 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
30 |
26 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ) |
31 |
|
icossicc |
⊢ ( 0 [,) 𝑀 ) ⊆ ( 0 [,] 𝑀 ) |
32 |
|
imass2 |
⊢ ( ( 0 [,) 𝑀 ) ⊆ ( 0 [,] 𝑀 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
33 |
31 32
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,) 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
34 |
29 33
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
35 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
36 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
38 |
35 37
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
39 |
6
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
40 |
|
df-ico |
⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) |
41 |
|
df-icc |
⊢ [,] = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣 ) } ) |
42 |
|
xrlelttr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅 ) → 𝑧 < 𝑅 ) ) |
43 |
40 41 42
|
ixxss2 |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅 ) → ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) ) |
44 |
38 39 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) ) |
45 |
|
imass2 |
⊢ ( ( 0 [,] 𝑀 ) ⊆ ( 0 [,) 𝑅 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
47 |
46 5
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) |
48 |
30 34 47
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑀 ) ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ∧ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ 𝑆 ) ) |