Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
6 |
|
psercn.m |
⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) |
7 |
|
pserdv.b |
⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
8 |
1 2 3 4 5 6 7
|
pserdv |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
11 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
12 |
11
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
13 |
10 12
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
14 |
|
id |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → 𝑘 = ( 1 + 𝑚 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) = ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑘 − 1 ) = ( ( 1 + 𝑚 ) − 1 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝑘 = ( 1 + 𝑚 ) → ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) ) |
20 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ ℤ ) |
21 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
22 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
25 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
26 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
27 |
24 25 26
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
28 |
23 27
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
29 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
30 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
31 |
30
|
fdmi |
⊢ dom abs = ℂ |
32 |
29 31
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
33 |
5 32
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
34 |
33
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
35 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
36 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
37 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
38 |
35 36 37
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
39 |
28 38
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
40 |
9 13 19 20 21 39
|
isumshft |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑚 ∈ ℕ0 ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) ) |
41 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
42 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
44 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 1 + 𝑚 ) = ( 𝑚 + 1 ) ) |
45 |
41 43 44
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 1 + 𝑚 ) = ( 𝑚 + 1 ) ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ ( 1 + 𝑚 ) ) = ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) |
47 |
45 46
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) = ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) |
48 |
|
pncan2 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
49 |
41 43 48
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
50 |
49
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = ( 𝑦 ↑ 𝑚 ) ) |
51 |
47 50
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) = ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) |
52 |
51
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( ( ( 1 + 𝑚 ) · ( 𝐴 ‘ ( 1 + 𝑚 ) ) ) · ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) = Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) |
53 |
40 52
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) |
54 |
53
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ Σ 𝑚 ∈ ℕ0 ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑦 ↑ 𝑚 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
55 |
8 54
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑘 ∈ ℕ ( ( 𝑘 · ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |