| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pserf.g | 
							⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pserf.f | 
							⊢ 𝐹  =  ( 𝑦  ∈  𝑆  ↦  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							pserf.a | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							pserf.r | 
							⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 5 | 
							
								
							 | 
							psercn.s | 
							⊢ 𝑆  =  ( ◡ abs  “  ( 0 [,) 𝑅 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							psercn.m | 
							⊢ 𝑀  =  if ( 𝑅  ∈  ℝ ,  ( ( ( abs ‘ 𝑎 )  +  𝑅 )  /  2 ) ,  ( ( abs ‘ 𝑎 )  +  1 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ⊆  dom  abs  | 
						
						
							| 8 | 
							
								
							 | 
							absf | 
							⊢ abs : ℂ ⟶ ℝ  | 
						
						
							| 9 | 
							
								8
							 | 
							fdmi | 
							⊢ dom  abs  =  ℂ  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sseqtri | 
							⊢ ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ⊆  ℂ  | 
						
						
							| 11 | 
							
								5 10
							 | 
							eqsstri | 
							⊢ 𝑆  ⊆  ℂ  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  ⊆  ℂ )  | 
						
						
							| 13 | 
							
								12
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑎  ∈  ℂ )  | 
						
						
							| 14 | 
							
								13
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6
							 | 
							psercnlem1 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑀  ∈  ℝ+  ∧  ( abs ‘ 𝑎 )  <  𝑀  ∧  𝑀  <  𝑅 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simp1d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ+ )  | 
						
						
							| 17 | 
							
								16
							 | 
							rpred | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( abs ‘ 𝑎 )  +  𝑀 )  ∈  ℝ )  | 
						
						
							| 19 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  ∈  ℝ )  | 
						
						
							| 20 | 
							
								13
							 | 
							absge0d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  ≤  ( abs ‘ 𝑎 ) )  | 
						
						
							| 21 | 
							
								14 16
							 | 
							ltaddrpd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  <  ( ( abs ‘ 𝑎 )  +  𝑀 ) )  | 
						
						
							| 22 | 
							
								19 14 18 20 21
							 | 
							lelttrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  <  ( ( abs ‘ 𝑎 )  +  𝑀 ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							elrpd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( abs ‘ 𝑎 )  +  𝑀 )  ∈  ℝ+ )  | 
						
						
							| 24 | 
							
								23
							 | 
							rphalfcld | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ+ )  | 
						
						
							| 25 | 
							
								15
							 | 
							simp2d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  <  𝑀 )  | 
						
						
							| 26 | 
							
								
							 | 
							avglt1 | 
							⊢ ( ( ( abs ‘ 𝑎 )  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( abs ‘ 𝑎 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  | 
						
						
							| 27 | 
							
								14 17 26
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( abs ‘ 𝑎 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  | 
						
						
							| 29 | 
							
								18
							 | 
							rehalfcld | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ )  | 
						
						
							| 30 | 
							
								29
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  | 
						
						
							| 31 | 
							
								17
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ* )  | 
						
						
							| 32 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 33 | 
							
								1 3 4
							 | 
							radcnvcl | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ* )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑅  ∈  ℝ* )  | 
						
						
							| 36 | 
							
								
							 | 
							avglt2 | 
							⊢ ( ( ( abs ‘ 𝑎 )  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 ) )  | 
						
						
							| 37 | 
							
								14 17 36
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 ) )  | 
						
						
							| 38 | 
							
								25 37
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 )  | 
						
						
							| 39 | 
							
								15
							 | 
							simp3d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  <  𝑅 )  | 
						
						
							| 40 | 
							
								30 31 35 38 39
							 | 
							xrlttrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑅 )  | 
						
						
							| 41 | 
							
								24 28 40
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ+  ∧  ( abs ‘ 𝑎 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∧  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑅 ) )  |