| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pserf.g | 
							⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pserf.f | 
							⊢ 𝐹  =  ( 𝑦  ∈  𝑆  ↦  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							pserf.a | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							pserf.r | 
							⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 5 | 
							
								
							 | 
							psercn.s | 
							⊢ 𝑆  =  ( ◡ abs  “  ( 0 [,) 𝑅 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							psercn.m | 
							⊢ 𝑀  =  if ( 𝑅  ∈  ℝ ,  ( ( ( abs ‘ 𝑎 )  +  𝑅 )  /  2 ) ,  ( ( abs ‘ 𝑎 )  +  1 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pserdv.b | 
							⊢ 𝐵  =  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 9 | 
							
								
							 | 
							cnelprrecn | 
							⊢ ℂ  ∈  { ℝ ,  ℂ }  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ℂ  ∈  { ℝ ,  ℂ } )  | 
						
						
							| 11 | 
							
								
							 | 
							0zd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  ∈  ℤ )  | 
						
						
							| 12 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  ( 0 ... 𝑘 )  ∈  Fin )  | 
						
						
							| 13 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 14 | 
							
								
							 | 
							cnxmet | 
							⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  | 
						
						
							| 15 | 
							
								
							 | 
							0cnd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  ∈  ℂ )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6
							 | 
							pserdvlem1 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ+  ∧  ( abs ‘ 𝑎 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∧  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑅 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simp1d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ+ )  | 
						
						
							| 18 | 
							
								17
							 | 
							rpxrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  | 
						
						
							| 19 | 
							
								
							 | 
							blssm | 
							⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  0  ∈  ℂ  ∧  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ⊆  ℂ )  | 
						
						
							| 20 | 
							
								14 15 18 19
							 | 
							mp3an2i | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ⊆  ℂ )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							eqsstrid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐵  ⊆  ℂ )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ⊆  ℂ )  | 
						
						
							| 23 | 
							
								22
							 | 
							sselda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 24 | 
							
								1 13 23
							 | 
							psergf | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 25 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑘 )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 26 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 28 | 
							
								12 27
							 | 
							fsumcl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 29 | 
							
								28
							 | 
							fmpttd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 30 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 31 | 
							
								7
							 | 
							ovexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 32 | 
							
								30 31
							 | 
							elmap | 
							⊢ ( ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  ∈  ( ℂ  ↑m  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  ∈  ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) : ℕ0 ⟶ ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 6
							 | 
							psercn | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆 –cn→ ℂ ) )  | 
						
						
							| 36 | 
							
								
							 | 
							cncff | 
							⊢ ( 𝐹  ∈  ( 𝑆 –cn→ ℂ )  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 39 | 
							
								1 2 3 4 5 16
							 | 
							psercnlem2 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑎  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ∧  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ⊆  ( ◡ abs  “  ( 0 [,] ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  ∧  ( ◡ abs  “  ( 0 [,] ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  ⊆  𝑆 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							simp2d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ⊆  ( ◡ abs  “  ( 0 [,] ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) ) )  | 
						
						
							| 41 | 
							
								7 40
							 | 
							eqsstrid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐵  ⊆  ( ◡ abs  “  ( 0 [,] ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) ) )  | 
						
						
							| 42 | 
							
								39
							 | 
							simp3d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ◡ abs  “  ( 0 [,] ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  ⊆  𝑆 )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐵  ⊆  𝑆 )  | 
						
						
							| 44 | 
							
								38 43
							 | 
							fssresd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 45 | 
							
								
							 | 
							0zd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  0  ∈  ℤ )  | 
						
						
							| 46 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 47 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 48 | 
							
								21
							 | 
							sselda | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  ℂ )  | 
						
						
							| 49 | 
							
								1 47 48
							 | 
							psergf | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 50 | 
							
								49
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 )  ∈  ℂ )  | 
						
						
							| 51 | 
							
								48
							 | 
							abscld | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs ‘ 𝑧 )  ∈  ℝ )  | 
						
						
							| 52 | 
							
								51
							 | 
							rexrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs ‘ 𝑧 )  ∈  ℝ* )  | 
						
						
							| 53 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  | 
						
						
							| 54 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 55 | 
							
								1 3 4
							 | 
							radcnvcl | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ* )  | 
						
						
							| 57 | 
							
								56
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝑅  ∈  ℝ* )  | 
						
						
							| 58 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  )  | 
						
						
							| 60 | 
							
								59
							 | 
							cnmetdval | 
							⊢ ( ( 𝑧  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( 𝑧 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑧  −  0 ) ) )  | 
						
						
							| 61 | 
							
								48 58 60
							 | 
							sylancl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑧  −  0 ) ) )  | 
						
						
							| 62 | 
							
								48
							 | 
							subid1d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  −  0 )  =  𝑧 )  | 
						
						
							| 63 | 
							
								62
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs ‘ ( 𝑧  −  0 ) )  =  ( abs ‘ 𝑧 ) )  | 
						
						
							| 64 | 
							
								61 63
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧 ( abs  ∘   −  ) 0 )  =  ( abs ‘ 𝑧 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 66 | 
							
								65 7
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  | 
						
						
							| 67 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) )  | 
						
						
							| 68 | 
							
								
							 | 
							0cnd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  0  ∈  ℂ )  | 
						
						
							| 69 | 
							
								
							 | 
							elbl3 | 
							⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  ∧  ( 0  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( 𝑧  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ↔  ( 𝑧 ( abs  ∘   −  ) 0 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  | 
						
						
							| 70 | 
							
								67 53 68 48 69
							 | 
							syl22anc | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ↔  ( 𝑧 ( abs  ∘   −  ) 0 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) ) )  | 
						
						
							| 71 | 
							
								66 70
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧 ( abs  ∘   −  ) 0 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  | 
						
						
							| 72 | 
							
								64 71
							 | 
							eqbrtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs ‘ 𝑧 )  <  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  | 
						
						
							| 73 | 
							
								16
							 | 
							simp3d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑅 )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑅 )  | 
						
						
							| 75 | 
							
								52 53 57 72 74
							 | 
							xrlttrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( abs ‘ 𝑧 )  <  𝑅 )  | 
						
						
							| 76 | 
							
								1 47 4 48 75
							 | 
							radcnvlt2 | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  ∈  dom   ⇝  )  | 
						
						
							| 77 | 
							
								8 45 46 50 76
							 | 
							isumclim2 | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  ⇝  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 78 | 
							
								43
							 | 
							sselda | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝑆 )  | 
						
						
							| 79 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑧  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							fveq1d | 
							⊢ ( 𝑦  =  𝑧  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							sumeq2sdv | 
							⊢ ( 𝑦  =  𝑧  →  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 )  ∈  V  | 
						
						
							| 83 | 
							
								81 2 82
							 | 
							fvmpt | 
							⊢ ( 𝑧  ∈  𝑆  →  ( 𝐹 ‘ 𝑧 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 84 | 
							
								78 83
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) )  | 
						
						
							| 85 | 
							
								77 84
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  ⇝  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑚  →  ( 0 ... 𝑘 )  =  ( 0 ... 𝑚 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							sumeq1d | 
							⊢ ( 𝑘  =  𝑚  →  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							mpteq2dv | 
							⊢ ( 𝑘  =  𝑚  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  | 
						
						
							| 90 | 
							
								31
							 | 
							mptex | 
							⊢ ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  ∈  V  | 
						
						
							| 91 | 
							
								88 89 90
							 | 
							fvmpt | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							fveq1d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) )  | 
						
						
							| 94 | 
							
								79
							 | 
							fveq1d | 
							⊢ ( 𝑦  =  𝑧  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							sumeq2sdv | 
							⊢ ( 𝑦  =  𝑧  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  | 
						
						
							| 97 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 )  ∈  V  | 
						
						
							| 98 | 
							
								95 96 97
							 | 
							fvmpt | 
							⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) )  | 
						
						
							| 100 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 )  | 
						
						
							| 102 | 
							
								101 8
							 | 
							eleqtrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 103 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 104 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 105 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 106 | 
							
								103 104 105
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 107 | 
							
								100 102 106
							 | 
							fsumser | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) )  | 
						
						
							| 108 | 
							
								93 99 107
							 | 
							3eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							mpteq2dva | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 110 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 111 | 
							
								
							 | 
							seqfn | 
							⊢ ( 0  ∈  ℤ  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							ax-mp | 
							⊢ seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ( ℤ≥ ‘ 0 )  | 
						
						
							| 113 | 
							
								8
							 | 
							fneq2i | 
							⊢ ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ℕ0  ↔  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 114 | 
							
								112 113
							 | 
							mpbir | 
							⊢ seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ℕ0  | 
						
						
							| 115 | 
							
								
							 | 
							dffn5 | 
							⊢ ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  Fn  ℕ0  ↔  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							mpbi | 
							⊢ seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) )  | 
						
						
							| 117 | 
							
								109 116
							 | 
							eqtr4di | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) )  =  seq 0 (  +  ,  ( 𝐺 ‘ 𝑧 ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 120 | 
							
								85 117 119
							 | 
							3brtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) )  ⇝  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 ) )  | 
						
						
							| 121 | 
							
								91
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							oveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ℂ  D  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) )  =  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) )  | 
						
						
							| 123 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 124 | 
							
								123
							 | 
							cnfldtopon | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  | 
						
						
							| 125 | 
							
								124
							 | 
							toponrestid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  | 
						
						
							| 126 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ℂ  ∈  { ℝ ,  ℂ } )  | 
						
						
							| 127 | 
							
								123
							 | 
							cnfldtopn | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( MetOpen ‘ ( abs  ∘   −  ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							blopn | 
							⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  0  ∈  ℂ  ∧  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ* )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ∈  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 129 | 
							
								14 15 18 128
							 | 
							mp3an2i | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 ) )  ∈  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 130 | 
							
								7 129
							 | 
							eqeltrid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐵  ∈  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  𝐵  ∈  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 132 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 0 ... 𝑚 )  ∈  Fin )  | 
						
						
							| 133 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 134 | 
							
								133
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 135 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  𝐵  ⊆  ℂ )  | 
						
						
							| 136 | 
							
								135
							 | 
							sselda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 137 | 
							
								136
							 | 
							3adant2 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 138 | 
							
								1 134 137
							 | 
							psergf | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 139 | 
							
								104
							 | 
							3ad2ant2 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 141 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ℂ  ∈  { ℝ ,  ℂ } )  | 
						
						
							| 142 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 143 | 
							
								133 104 142
							 | 
							syl2an | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 144 | 
							
								143
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 145 | 
							
								136
							 | 
							adantlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 146 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  ∈  ℂ  →  𝑦  ∈  ℂ )  | 
						
						
							| 147 | 
							
								104
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 148 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 149 | 
							
								146 147 148
							 | 
							syl2anr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  ℂ )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 150 | 
							
								145 149
							 | 
							syldan | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 151 | 
							
								144 150
							 | 
							mulcld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 152 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  V )  | 
						
						
							| 153 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 154 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) )  ∈  V  | 
						
						
							| 155 | 
							
								153 154
							 | 
							ifex | 
							⊢ if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  ∈  V  | 
						
						
							| 156 | 
							
								155
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  ∈  V )  | 
						
						
							| 157 | 
							
								155
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  ℂ )  →  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  ∈  V )  | 
						
						
							| 158 | 
							
								
							 | 
							dvexp2 | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑖 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  | 
						
						
							| 159 | 
							
								147 158
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 𝑖 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  | 
						
						
							| 160 | 
							
								21
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  𝐵  ⊆  ℂ )  | 
						
						
							| 161 | 
							
								130
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  𝐵  ∈  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 162 | 
							
								141 149 157 159 160 125 123 161
							 | 
							dvmptres | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  ( 𝑦 ↑ 𝑖 ) ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  | 
						
						
							| 163 | 
							
								141 150 156 162 143
							 | 
							dvmptcmul | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  =  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  | 
						
						
							| 164 | 
							
								141 151 152 163
							 | 
							dvmptcl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 165 | 
							
								164
							 | 
							3impa | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 166 | 
							
								104
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 167 | 
							
								1
							 | 
							pserval2 | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 168 | 
							
								145 166 167
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 169 | 
							
								168
							 | 
							mpteq2dva | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  =  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ) )  | 
						
						
							| 171 | 
							
								170 163
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  =  ( 𝑦  ∈  𝐵  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  | 
						
						
							| 172 | 
							
								125 123 126 131 132 140 165 171
							 | 
							dvmptfsum | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ℂ  D  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  | 
						
						
							| 173 | 
							
								122 172
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ℂ  D  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  | 
						
						
							| 174 | 
							
								173
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ℂ  D  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) )  | 
						
						
							| 175 | 
							
								
							 | 
							nnssnn0 | 
							⊢ ℕ  ⊆  ℕ0  | 
						
						
							| 176 | 
							
								
							 | 
							resmpt | 
							⊢ ( ℕ  ⊆  ℕ0  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  ↾  ℕ )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) )  | 
						
						
							| 177 | 
							
								175 176
							 | 
							ax-mp | 
							⊢ ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  ↾  ℕ )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  | 
						
						
							| 178 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑎 ↑ 𝑖 )  =  ( 𝑥 ↑ 𝑖 ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							oveq2d | 
							⊢ ( 𝑎  =  𝑥  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) )  =  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑖 ) ) )  | 
						
						
							| 180 | 
							
								179
							 | 
							mpteq2dv | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑖 ) ) ) )  | 
						
						
							| 181 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑖  =  𝑛  →  ( 𝑖  +  1 )  =  ( 𝑛  +  1 ) )  | 
						
						
							| 182 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑖  =  𝑛  →  ( 𝐴 ‘ ( 𝑖  +  1 ) )  =  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  | 
						
						
							| 183 | 
							
								181 182
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  𝑛  →  ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 184 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑖  =  𝑛  →  ( 𝑥 ↑ 𝑖 )  =  ( 𝑥 ↑ 𝑛 ) )  | 
						
						
							| 185 | 
							
								183 184
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  𝑛  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑖 ) )  =  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 186 | 
							
								185
							 | 
							cbvmptv | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑖 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 187 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) )  | 
						
						
							| 188 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝐴 ‘ ( 𝑚  +  1 ) )  =  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  | 
						
						
							| 189 | 
							
								187 188
							 | 
							oveq12d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) )  =  ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 190 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) )  | 
						
						
							| 191 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ∈  V  | 
						
						
							| 192 | 
							
								189 190 191
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 193 | 
							
								192
							 | 
							oveq1d | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 194 | 
							
								193
							 | 
							mpteq2ia | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 195 | 
							
								186 194
							 | 
							eqtr4i | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑥 ↑ 𝑖 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 196 | 
							
								180 195
							 | 
							eqtrdi | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) )  | 
						
						
							| 197 | 
							
								196
							 | 
							cbvmptv | 
							⊢ ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) )  | 
						
						
							| 198 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑧  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 )  =  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							fveq1d | 
							⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							sumeq2sdv | 
							⊢ ( 𝑦  =  𝑧  →  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) )  | 
						
						
							| 201 | 
							
								200
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) )  =  ( 𝑧  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) )  | 
						
						
							| 202 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℕ0 )  | 
						
						
							| 203 | 
							
								202
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  +  1 )  ∈  ℕ0 )  | 
						
						
							| 204 | 
							
								203
							 | 
							nn0cnd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  +  1 )  ∈  ℂ )  | 
						
						
							| 205 | 
							
								133 203
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑚  +  1 ) )  ∈  ℂ )  | 
						
						
							| 206 | 
							
								204 205
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) )  ∈  ℂ )  | 
						
						
							| 207 | 
							
								206
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ( 𝑚  +  1 )  ·  ( 𝐴 ‘ ( 𝑚  +  1 ) ) ) ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 208 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑗  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 )  =  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							seqeq3d | 
							⊢ ( 𝑟  =  𝑗  →  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  =  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							eleq1d | 
							⊢ ( 𝑟  =  𝑗  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) )  ∈  dom   ⇝  ) )  | 
						
						
							| 211 | 
							
								210
							 | 
							cbvrabv | 
							⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  }  =  { 𝑗  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) )  ∈  dom   ⇝  }  | 
						
						
							| 212 | 
							
								211
							 | 
							supeq1i | 
							⊢ sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  =  sup ( { 𝑗  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 213 | 
							
								198
							 | 
							seqeq3d | 
							⊢ ( 𝑦  =  𝑧  →  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) )  =  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) )  | 
						
						
							| 214 | 
							
								213
							 | 
							fveq1d | 
							⊢ ( 𝑦  =  𝑧  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) )  | 
						
						
							| 215 | 
							
								214
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) )  =  ( 𝑧  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) )  | 
						
						
							| 216 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑚  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) )  | 
						
						
							| 217 | 
							
								216
							 | 
							mpteq2dv | 
							⊢ ( 𝑗  =  𝑚  →  ( 𝑧  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) )  =  ( 𝑧  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 218 | 
							
								215 217
							 | 
							eqtrid | 
							⊢ ( 𝑗  =  𝑚  →  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) )  =  ( 𝑧  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 219 | 
							
								218
							 | 
							cbvmptv | 
							⊢ ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝑧  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) )  | 
						
						
							| 220 | 
							
								17
							 | 
							rpred | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  ∈  ℝ )  | 
						
						
							| 221 | 
							
								1 2 3 4 5 6
							 | 
							psercnlem1 | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑀  ∈  ℝ+  ∧  ( abs ‘ 𝑎 )  <  𝑀  ∧  𝑀  <  𝑅 ) )  | 
						
						
							| 222 | 
							
								221
							 | 
							simp1d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ+ )  | 
						
						
							| 223 | 
							
								222
							 | 
							rpxrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ* )  | 
						
						
							| 224 | 
							
								197 207 212
							 | 
							radcnvcl | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 225 | 
							
								54 224
							 | 
							sselid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 226 | 
							
								221
							 | 
							simp2d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  <  𝑀 )  | 
						
						
							| 227 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ⊆  dom  abs  | 
						
						
							| 228 | 
							
								
							 | 
							absf | 
							⊢ abs : ℂ ⟶ ℝ  | 
						
						
							| 229 | 
							
								228
							 | 
							fdmi | 
							⊢ dom  abs  =  ℂ  | 
						
						
							| 230 | 
							
								227 229
							 | 
							sseqtri | 
							⊢ ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ⊆  ℂ  | 
						
						
							| 231 | 
							
								5 230
							 | 
							eqsstri | 
							⊢ 𝑆  ⊆  ℂ  | 
						
						
							| 232 | 
							
								231
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  ⊆  ℂ )  | 
						
						
							| 233 | 
							
								232
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑎  ∈  ℂ )  | 
						
						
							| 234 | 
							
								233
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑎 )  ∈  ℝ )  | 
						
						
							| 235 | 
							
								222
							 | 
							rpred | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 236 | 
							
								
							 | 
							avglt2 | 
							⊢ ( ( ( abs ‘ 𝑎 )  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 ) )  | 
						
						
							| 237 | 
							
								234 235 236
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( abs ‘ 𝑎 )  <  𝑀  ↔  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 ) )  | 
						
						
							| 238 | 
							
								226 237
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  𝑀 )  | 
						
						
							| 239 | 
							
								222
							 | 
							rpge0d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  0  ≤  𝑀 )  | 
						
						
							| 240 | 
							
								235 239
							 | 
							absidd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑀 )  =  𝑀 )  | 
						
						
							| 241 | 
							
								222
							 | 
							rpcnd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ∈  ℂ )  | 
						
						
							| 242 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑤  =  𝑀  →  ( 𝑤 ↑ 𝑖 )  =  ( 𝑀 ↑ 𝑖 ) )  | 
						
						
							| 243 | 
							
								242
							 | 
							oveq2d | 
							⊢ ( 𝑤  =  𝑀  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑤 ↑ 𝑖 ) )  =  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) )  | 
						
						
							| 244 | 
							
								243
							 | 
							mpteq2dv | 
							⊢ ( 𝑤  =  𝑀  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑤 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) ) )  | 
						
						
							| 245 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑎  =  𝑤  →  ( 𝑎 ↑ 𝑖 )  =  ( 𝑤 ↑ 𝑖 ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							oveq2d | 
							⊢ ( 𝑎  =  𝑤  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) )  =  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑤 ↑ 𝑖 ) ) )  | 
						
						
							| 247 | 
							
								246
							 | 
							mpteq2dv | 
							⊢ ( 𝑎  =  𝑤  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑤 ↑ 𝑖 ) ) ) )  | 
						
						
							| 248 | 
							
								247
							 | 
							cbvmptv | 
							⊢ ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) )  =  ( 𝑤  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑤 ↑ 𝑖 ) ) ) )  | 
						
						
							| 249 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 250 | 
							
								249
							 | 
							mptex | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) )  ∈  V  | 
						
						
							| 251 | 
							
								244 248 250
							 | 
							fvmpt | 
							⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) ) )  | 
						
						
							| 252 | 
							
								241 251
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) ) )  | 
						
						
							| 253 | 
							
								252
							 | 
							seqeq3d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) )  =  seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) ) ) )  | 
						
						
							| 254 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 255 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝑥 ↑ 𝑛 )  =  ( 𝑥 ↑ 𝑖 ) )  | 
						
						
							| 256 | 
							
								254 255
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝑖  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  | 
						
						
							| 257 | 
							
								256
							 | 
							cbvmptv | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  | 
						
						
							| 258 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ↑ 𝑖 )  =  ( 𝑦 ↑ 𝑖 ) )  | 
						
						
							| 259 | 
							
								258
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 260 | 
							
								259
							 | 
							mpteq2dv | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 261 | 
							
								257 260
							 | 
							eqtrid | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 262 | 
							
								261
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 263 | 
							
								1 262
							 | 
							eqtri | 
							⊢ 𝐺  =  ( 𝑦  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 264 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑠  →  ( 𝐺 ‘ 𝑟 )  =  ( 𝐺 ‘ 𝑠 ) )  | 
						
						
							| 265 | 
							
								264
							 | 
							seqeq3d | 
							⊢ ( 𝑟  =  𝑠  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  =  seq 0 (  +  ,  ( 𝐺 ‘ 𝑠 ) ) )  | 
						
						
							| 266 | 
							
								265
							 | 
							eleq1d | 
							⊢ ( 𝑟  =  𝑠  →  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝐺 ‘ 𝑠 ) )  ∈  dom   ⇝  ) )  | 
						
						
							| 267 | 
							
								266
							 | 
							cbvrabv | 
							⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  =  { 𝑠  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑠 ) )  ∈  dom   ⇝  }  | 
						
						
							| 268 | 
							
								267
							 | 
							supeq1i | 
							⊢ sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  =  sup ( { 𝑠  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑠 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 269 | 
							
								4 268
							 | 
							eqtri | 
							⊢ 𝑅  =  sup ( { 𝑠  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑠 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 270 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) )  | 
						
						
							| 271 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 272 | 
							
								221
							 | 
							simp3d | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  <  𝑅 )  | 
						
						
							| 273 | 
							
								240 272
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑀 )  <  𝑅 )  | 
						
						
							| 274 | 
							
								263 269 270 271 241 273
							 | 
							dvradcnv | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑀 ↑ 𝑖 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 275 | 
							
								253 274
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) )  ∈  dom   ⇝  )  | 
						
						
							| 276 | 
							
								197 207 212 241 275
							 | 
							radcnvle | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( abs ‘ 𝑀 )  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 277 | 
							
								240 276
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑀  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 278 | 
							
								18 223 225 238 277
							 | 
							xrltletrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( abs ‘ 𝑎 )  +  𝑀 )  /  2 )  <  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 279 | 
							
								197 201 207 212 219 220 278 41
							 | 
							pserulm | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) )  | 
						
						
							| 280 | 
							
								21
							 | 
							sselda | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 281 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑎  =  𝑦  →  ( 𝑎 ↑ 𝑖 )  =  ( 𝑦 ↑ 𝑖 ) )  | 
						
						
							| 282 | 
							
								281
							 | 
							oveq2d | 
							⊢ ( 𝑎  =  𝑦  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) )  =  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 283 | 
							
								282
							 | 
							mpteq2dv | 
							⊢ ( 𝑎  =  𝑦  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 284 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) )  =  ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) )  | 
						
						
							| 285 | 
							
								249
							 | 
							mptex | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  ∈  V  | 
						
						
							| 286 | 
							
								283 284 285
							 | 
							fvmpt | 
							⊢ ( 𝑦  ∈  ℂ  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 287 | 
							
								280 286
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 288 | 
							
								287
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 289 | 
							
								288
							 | 
							fveq1d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) )  | 
						
						
							| 290 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑖  =  𝑘  →  ( 𝑖  +  1 )  =  ( 𝑘  +  1 ) )  | 
						
						
							| 291 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑖  =  𝑘  →  ( 𝐴 ‘ ( 𝑖  +  1 ) )  =  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 292 | 
							
								290 291
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  𝑘  →  ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 293 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑖  =  𝑘  →  ( 𝑦 ↑ 𝑖 )  =  ( 𝑦 ↑ 𝑘 ) )  | 
						
						
							| 294 | 
							
								292 293
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  𝑘  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 295 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 296 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) )  ∈  V  | 
						
						
							| 297 | 
							
								294 295 296
							 | 
							fvmpt | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 298 | 
							
								297
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 299 | 
							
								289 298
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 300 | 
							
								299
							 | 
							sumeq2dv | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 301 | 
							
								300
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 302 | 
							
								279 301
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 303 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 304 | 
							
								
							 | 
							1e0p1 | 
							⊢ 1  =  ( 0  +  1 )  | 
						
						
							| 305 | 
							
								304
							 | 
							fveq2i | 
							⊢ ( ℤ≥ ‘ 1 )  =  ( ℤ≥ ‘ ( 0  +  1 ) )  | 
						
						
							| 306 | 
							
								303 305
							 | 
							eqtri | 
							⊢ ℕ  =  ( ℤ≥ ‘ ( 0  +  1 ) )  | 
						
						
							| 307 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  1  ∈  ℤ )  | 
						
						
							| 308 | 
							
								
							 | 
							0zd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  0  ∈  ℤ )  | 
						
						
							| 309 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( 𝑖  +  1 )  ∈  ℕ0 )  | 
						
						
							| 310 | 
							
								309
							 | 
							nn0cnd | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( 𝑖  +  1 )  ∈  ℂ )  | 
						
						
							| 311 | 
							
								310
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  +  1 )  ∈  ℂ )  | 
						
						
							| 312 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 313 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  ( 𝑖  +  1 )  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑖  +  1 ) )  ∈  ℂ )  | 
						
						
							| 314 | 
							
								312 309 313
							 | 
							syl2an | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑖  +  1 ) )  ∈  ℂ )  | 
						
						
							| 315 | 
							
								311 314
							 | 
							mulcld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ∈  ℂ )  | 
						
						
							| 316 | 
							
								280 148
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 317 | 
							
								315 316
							 | 
							mulcld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 318 | 
							
								287 317
							 | 
							fmpt3d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 319 | 
							
								318
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 320 | 
							
								8 308 319
							 | 
							serf | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  →  seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 321 | 
							
								320
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ℕ0 )  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 )  ∈  ℂ )  | 
						
						
							| 322 | 
							
								321
							 | 
							an32s | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 )  ∈  ℂ )  | 
						
						
							| 323 | 
							
								322
							 | 
							fmpttd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 324 | 
							
								30 31
							 | 
							elmap | 
							⊢ ( ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) )  ∈  ( ℂ  ↑m  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 325 | 
							
								323 324
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) )  ∈  ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 326 | 
							
								325
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) : ℕ0 ⟶ ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 327 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ∈  ℕ )  | 
						
						
							| 328 | 
							
								327
							 | 
							nnne0d | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ≠  0 )  | 
						
						
							| 329 | 
							
								328
							 | 
							neneqd | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  ¬  𝑖  =  0 )  | 
						
						
							| 330 | 
							
								329
							 | 
							iffalsed | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  =  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  | 
						
						
							| 331 | 
							
								330
							 | 
							oveq2d | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  | 
						
						
							| 332 | 
							
								331
							 | 
							sumeq2i | 
							⊢ Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  | 
						
						
							| 333 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  1  ∈  ℤ )  | 
						
						
							| 334 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℤ )  | 
						
						
							| 335 | 
							
								334
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  𝑚  ∈  ℤ )  | 
						
						
							| 336 | 
							
								271
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 337 | 
							
								327
							 | 
							nnnn0d | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 338 | 
							
								336 337 142
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 339 | 
							
								327
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℕ )  | 
						
						
							| 340 | 
							
								339
							 | 
							nncnd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℂ )  | 
						
						
							| 341 | 
							
								280
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 342 | 
							
								
							 | 
							nnm1nn0 | 
							⊢ ( 𝑖  ∈  ℕ  →  ( 𝑖  −  1 )  ∈  ℕ0 )  | 
						
						
							| 343 | 
							
								327 342
							 | 
							syl | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑚 )  →  ( 𝑖  −  1 )  ∈  ℕ0 )  | 
						
						
							| 344 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑖  −  1 )  ∈  ℕ0 )  →  ( 𝑦 ↑ ( 𝑖  −  1 ) )  ∈  ℂ )  | 
						
						
							| 345 | 
							
								341 343 344
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝑦 ↑ ( 𝑖  −  1 ) )  ∈  ℂ )  | 
						
						
							| 346 | 
							
								340 345
							 | 
							mulcld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) )  ∈  ℂ )  | 
						
						
							| 347 | 
							
								338 346
							 | 
							mulcld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  ∈  ℂ )  | 
						
						
							| 348 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝐴 ‘ 𝑖 )  =  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 349 | 
							
								
							 | 
							id | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  𝑖  =  ( 𝑘  +  1 ) )  | 
						
						
							| 350 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝑖  −  1 )  =  ( ( 𝑘  +  1 )  −  1 ) )  | 
						
						
							| 351 | 
							
								350
							 | 
							oveq2d | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝑦 ↑ ( 𝑖  −  1 ) )  =  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) )  | 
						
						
							| 352 | 
							
								349 351
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  | 
						
						
							| 353 | 
							
								348 352
							 | 
							oveq12d | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) ) )  | 
						
						
							| 354 | 
							
								333 333 335 347 353
							 | 
							fsumshftm | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  =  Σ 𝑘  ∈  ( ( 1  −  1 ) ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) ) )  | 
						
						
							| 355 | 
							
								332 354
							 | 
							eqtrid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  Σ 𝑘  ∈  ( ( 1  −  1 ) ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) ) )  | 
						
						
							| 356 | 
							
								
							 | 
							fz1ssfz0 | 
							⊢ ( 1 ... 𝑚 )  ⊆  ( 0 ... 𝑚 )  | 
						
						
							| 357 | 
							
								356
							 | 
							a1i | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  ( 1 ... 𝑚 )  ⊆  ( 0 ... 𝑚 ) )  | 
						
						
							| 358 | 
							
								331
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  | 
						
						
							| 359 | 
							
								358 347
							 | 
							eqeltrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑚 ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 360 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( ( 0  +  1 ) ... 𝑚 ) )  ↔  ( 𝑖  ∈  ( 0 ... 𝑚 )  ∧  ¬  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) ) )  | 
						
						
							| 361 | 
							
								
							 | 
							elfzuz2 | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 362 | 
							
								
							 | 
							elfzp12 | 
							⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑖  ∈  ( 0 ... 𝑚 )  ↔  ( 𝑖  =  0  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) ) ) )  | 
						
						
							| 363 | 
							
								361 362
							 | 
							syl | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  ( 𝑖  ∈  ( 0 ... 𝑚 )  ↔  ( 𝑖  =  0  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) ) ) )  | 
						
						
							| 364 | 
							
								363
							 | 
							ibi | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  ( 𝑖  =  0  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) ) )  | 
						
						
							| 365 | 
							
								364
							 | 
							ord | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  ( ¬  𝑖  =  0  →  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) ) )  | 
						
						
							| 366 | 
							
								365
							 | 
							con1d | 
							⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  ( ¬  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 )  →  𝑖  =  0 ) )  | 
						
						
							| 367 | 
							
								366
							 | 
							imp | 
							⊢ ( ( 𝑖  ∈  ( 0 ... 𝑚 )  ∧  ¬  𝑖  ∈  ( ( 0  +  1 ) ... 𝑚 ) )  →  𝑖  =  0 )  | 
						
						
							| 368 | 
							
								360 367
							 | 
							sylbi | 
							⊢ ( 𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( ( 0  +  1 ) ... 𝑚 ) )  →  𝑖  =  0 )  | 
						
						
							| 369 | 
							
								304
							 | 
							oveq1i | 
							⊢ ( 1 ... 𝑚 )  =  ( ( 0  +  1 ) ... 𝑚 )  | 
						
						
							| 370 | 
							
								369
							 | 
							difeq2i | 
							⊢ ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) )  =  ( ( 0 ... 𝑚 )  ∖  ( ( 0  +  1 ) ... 𝑚 ) )  | 
						
						
							| 371 | 
							
								368 370
							 | 
							eleq2s | 
							⊢ ( 𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) )  →  𝑖  =  0 )  | 
						
						
							| 372 | 
							
								371
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  𝑖  =  0 )  | 
						
						
							| 373 | 
							
								372
							 | 
							iftrued | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) )  =  0 )  | 
						
						
							| 374 | 
							
								373
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  0 ) )  | 
						
						
							| 375 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ( 0 ... 𝑚 ) )  | 
						
						
							| 376 | 
							
								375 104
							 | 
							syl | 
							⊢ ( 𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 377 | 
							
								336 376 142
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 378 | 
							
								377
							 | 
							mul01d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  0 )  =  0 )  | 
						
						
							| 379 | 
							
								374 378
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( ( 0 ... 𝑚 )  ∖  ( 1 ... 𝑚 ) ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  0 )  | 
						
						
							| 380 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  ( 0 ... 𝑚 )  ∈  Fin )  | 
						
						
							| 381 | 
							
								357 359 379 380
							 | 
							fsumss | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  | 
						
						
							| 382 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 383 | 
							
								382
							 | 
							oveq1i | 
							⊢ ( ( 1  −  1 ) ... ( 𝑚  −  1 ) )  =  ( 0 ... ( 𝑚  −  1 ) )  | 
						
						
							| 384 | 
							
								383
							 | 
							sumeq1i | 
							⊢ Σ 𝑘  ∈  ( ( 1  −  1 ) ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  | 
						
						
							| 385 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 386 | 
							
								385
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 387 | 
							
								386 297
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 388 | 
							
								341
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  𝑦  ∈  ℂ )  | 
						
						
							| 389 | 
							
								388 286
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) )  | 
						
						
							| 390 | 
							
								389
							 | 
							fveq1d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) )  | 
						
						
							| 391 | 
							
								336
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 392 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 )  | 
						
						
							| 393 | 
							
								386 392
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ℕ0 )  | 
						
						
							| 394 | 
							
								391 393
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝐴 ‘ ( 𝑘  +  1 ) )  ∈  ℂ )  | 
						
						
							| 395 | 
							
								393
							 | 
							nn0cnd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ℂ )  | 
						
						
							| 396 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 397 | 
							
								341 385 396
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 398 | 
							
								394 395 397
							 | 
							mul12d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 399 | 
							
								386
							 | 
							nn0cnd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  𝑘  ∈  ℂ )  | 
						
						
							| 400 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 401 | 
							
								
							 | 
							pncan | 
							⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 )  | 
						
						
							| 402 | 
							
								399 400 401
							 | 
							sylancl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 )  | 
						
						
							| 403 | 
							
								402
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) )  =  ( 𝑦 ↑ 𝑘 ) )  | 
						
						
							| 404 | 
							
								403
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 405 | 
							
								404
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 406 | 
							
								395 394 397
							 | 
							mulassd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( ( 𝑘  +  1 )  ·  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 407 | 
							
								398 405 406
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 408 | 
							
								387 390 407
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) ) )  | 
						
						
							| 409 | 
							
								
							 | 
							nnm1nn0 | 
							⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  −  1 )  ∈  ℕ0 )  | 
						
						
							| 410 | 
							
								409
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  −  1 )  ∈  ℕ0 )  | 
						
						
							| 411 | 
							
								410
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑚  −  1 )  ∈  ℕ0 )  | 
						
						
							| 412 | 
							
								411 8
							 | 
							eleqtrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑚  −  1 )  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 413 | 
							
								403 397
							 | 
							eqeltrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) )  ∈  ℂ )  | 
						
						
							| 414 | 
							
								395 413
							 | 
							mulcld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) )  ∈  ℂ )  | 
						
						
							| 415 | 
							
								394 414
							 | 
							mulcld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  ∈  ℂ )  | 
						
						
							| 416 | 
							
								408 412 415
							 | 
							fsumser | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) )  | 
						
						
							| 417 | 
							
								384 416
							 | 
							eqtrid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑘  ∈  ( ( 1  −  1 ) ... ( 𝑚  −  1 ) ) ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑘  +  1 )  ·  ( 𝑦 ↑ ( ( 𝑘  +  1 )  −  1 ) ) ) )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) )  | 
						
						
							| 418 | 
							
								355 381 417
							 | 
							3eqtr3d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) )  | 
						
						
							| 419 | 
							
								418
							 | 
							mpteq2dva | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  =  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) ) )  | 
						
						
							| 420 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  ( 𝑚  −  1 )  →  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 )  =  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) )  | 
						
						
							| 421 | 
							
								420
							 | 
							mpteq2dv | 
							⊢ ( 𝑗  =  ( 𝑚  −  1 )  →  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) ) )  | 
						
						
							| 422 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) )  =  ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) )  | 
						
						
							| 423 | 
							
								31
							 | 
							mptex | 
							⊢ ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) )  ∈  V  | 
						
						
							| 424 | 
							
								421 422 423
							 | 
							fvmpt | 
							⊢ ( ( 𝑚  −  1 )  ∈  ℕ0  →  ( ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚  −  1 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) ) )  | 
						
						
							| 425 | 
							
								410 424
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚  −  1 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚  −  1 ) ) ) )  | 
						
						
							| 426 | 
							
								419 425
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  =  ( ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚  −  1 ) ) )  | 
						
						
							| 427 | 
							
								426
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚  −  1 ) ) ) )  | 
						
						
							| 428 | 
							
								8 306 11 307 326 427
							 | 
							ulmshft | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( 𝑗  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  ( seq 0 (  +  ,  ( ( 𝑎  ∈  ℂ  ↦  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  1 )  ·  ( 𝐴 ‘ ( 𝑖  +  1 ) ) )  ·  ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ↔  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) )  | 
						
						
							| 429 | 
							
								302 428
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 430 | 
							
								177 429
							 | 
							eqbrtrid | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  ↾  ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 431 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 432 | 
							
								431
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  1  ∈  ℕ0 )  | 
						
						
							| 433 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  ( 0 ... 𝑚 )  ∈  Fin )  | 
						
						
							| 434 | 
							
								164
							 | 
							an32s | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 435 | 
							
								433 434
							 | 
							fsumcl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑦  ∈  𝐵 )  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 436 | 
							
								435
							 | 
							fmpttd | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 437 | 
							
								30 31
							 | 
							elmap | 
							⊢ ( ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  ∈  ( ℂ  ↑m  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ )  | 
						
						
							| 438 | 
							
								436 437
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) )  ∈  ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 439 | 
							
								438
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) : ℕ0 ⟶ ( ℂ  ↑m  𝐵 ) )  | 
						
						
							| 440 | 
							
								8 303 432 439
							 | 
							ulmres | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ↔  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) )  ↾  ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) )  | 
						
						
							| 441 | 
							
								430 440
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 )  ·  if ( 𝑖  =  0 ,  0 ,  ( 𝑖  ·  ( 𝑦 ↑ ( 𝑖  −  1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 442 | 
							
								174 441
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( 𝑚  ∈  ℕ0  ↦  ( ℂ  D  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  ∈  𝐵  ↦  Σ 𝑖  ∈  ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  | 
						
						
							| 443 | 
							
								8 10 11 34 44 120 442
							 | 
							ulmdv | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ℂ  D  ( 𝐹  ↾  𝐵 ) )  =  ( 𝑦  ∈  𝐵  ↦  Σ 𝑘  ∈  ℕ0 ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  |