Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
5 |
|
psercn.s |
⊢ 𝑆 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
6 |
|
psercn.m |
⊢ 𝑀 = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑎 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑎 ) + 1 ) ) |
7 |
|
pserdv.b |
⊢ 𝐵 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
9 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ℂ ∈ { ℝ , ℂ } ) |
11 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℤ ) |
12 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
13 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
14 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
15 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ∈ ℂ ) |
16 |
1 2 3 4 5 6
|
pserdvlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) ) |
17 |
16
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ+ ) |
18 |
17
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
19 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
20 |
14 15 18 19
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ℂ ) |
21 |
7 20
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ℂ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ⊆ ℂ ) |
23 |
22
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
24 |
1 13 23
|
psergf |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
25 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑘 ) → 𝑖 ∈ ℕ0 ) |
26 |
|
ffvelrn |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
27 |
24 25 26
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
28 |
12 27
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
29 |
28
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ ) |
30 |
|
cnex |
⊢ ℂ ∈ V |
31 |
7
|
ovexi |
⊢ 𝐵 ∈ V |
32 |
30 31
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) : 𝐵 ⟶ ℂ ) |
33 |
29 32
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
34 |
33
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
35 |
1 2 3 4 5 6
|
psercn |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
36 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝑆 –cn→ ℂ ) → 𝐹 : 𝑆 ⟶ ℂ ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
39 |
1 2 3 4 5 16
|
psercnlem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ∧ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) ) |
40 |
39
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ) |
41 |
7 40
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ) |
42 |
39
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ◡ abs “ ( 0 [,] ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) ⊆ 𝑆 ) |
43 |
41 42
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ⊆ 𝑆 ) |
44 |
38 43
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
45 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 0 ∈ ℤ ) |
46 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
47 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
48 |
21
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℂ ) |
49 |
1 47 48
|
psergf |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ) |
50 |
49
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ∈ ℂ ) |
51 |
48
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
52 |
51
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) ∈ ℝ* ) |
53 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) |
54 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
55 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
56 |
54 55
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑅 ∈ ℝ* ) |
58 |
|
0cn |
⊢ 0 ∈ ℂ |
59 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
60 |
59
|
cnmetdval |
⊢ ( ( 𝑧 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
61 |
48 58 60
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
62 |
48
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 − 0 ) = 𝑧 ) |
63 |
62
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ ( 𝑧 − 0 ) ) = ( abs ‘ 𝑧 ) ) |
64 |
61 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑧 ) ) |
65 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
66 |
65 7
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
67 |
14
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
68 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 0 ∈ ℂ ) |
69 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
70 |
67 53 68 48 69
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ) |
71 |
66 70
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( abs ∘ − ) 0 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
72 |
64 71
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) < ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) |
73 |
16
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑅 ) |
75 |
52 53 57 72 74
|
xrlttrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( abs ‘ 𝑧 ) < 𝑅 ) |
76 |
1 47 4 48 75
|
radcnvlt2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ∈ dom ⇝ ) |
77 |
8 45 46 50 76
|
isumclim2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ⇝ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
78 |
43
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑆 ) |
79 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
80 |
79
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
81 |
80
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑧 → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
82 |
|
sumex |
⊢ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ∈ V |
83 |
81 2 82
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑆 → ( 𝐹 ‘ 𝑧 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
84 |
78 83
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑗 ) ) |
85 |
77 84
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ⇝ ( 𝐹 ‘ 𝑧 ) ) |
86 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 0 ... 𝑘 ) = ( 0 ... 𝑚 ) ) |
87 |
86
|
sumeq1d |
⊢ ( 𝑘 = 𝑚 → Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) |
88 |
87
|
mpteq2dv |
⊢ ( 𝑘 = 𝑚 → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
89 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
90 |
31
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ∈ V |
91 |
88 89 90
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
92 |
91
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
93 |
92
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) ) |
94 |
79
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
95 |
94
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑧 → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
96 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) |
97 |
|
sumex |
⊢ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ V |
98 |
95 96 97
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
99 |
98
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ‘ 𝑧 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
100 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ) |
101 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
102 |
101 8
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
103 |
49
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ) |
104 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑖 ∈ ℕ0 ) |
105 |
|
ffvelrn |
⊢ ( ( ( 𝐺 ‘ 𝑧 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ ℂ ) |
106 |
103 104 105
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) ∈ ℂ ) |
107 |
100 102 106
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑖 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
108 |
93 99 107
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
109 |
108
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
110 |
|
0z |
⊢ 0 ∈ ℤ |
111 |
|
seqfn |
⊢ ( 0 ∈ ℤ → seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) ) |
112 |
110 111
|
ax-mp |
⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) |
113 |
8
|
fneq2i |
⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 ↔ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ( ℤ≥ ‘ 0 ) ) |
114 |
112 113
|
mpbir |
⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 |
115 |
|
dffn5 |
⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) Fn ℕ0 ↔ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
116 |
114 115
|
mpbi |
⊢ seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
117 |
109 116
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑧 ) ) ) |
118 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
119 |
118
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
120 |
85 117 119
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ‘ 𝑧 ) ) ⇝ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) ) |
121 |
91
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) |
122 |
121
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( ℂ D ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ) |
123 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
124 |
123
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
125 |
124
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
126 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } ) |
127 |
123
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
128 |
127
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
129 |
14 15 18 128
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
130 |
7 129
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
131 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
132 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
133 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
134 |
133
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
135 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐵 ⊆ ℂ ) |
136 |
135
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
137 |
136
|
3adant2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
138 |
1 134 137
|
psergf |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
139 |
104
|
3ad2ant2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑖 ∈ ℕ0 ) |
140 |
138 139
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ∈ ℂ ) |
141 |
9
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ℂ ∈ { ℝ , ℂ } ) |
142 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
143 |
133 104 142
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
144 |
143
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
145 |
136
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
146 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
147 |
104
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝑖 ∈ ℕ0 ) |
148 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
149 |
146 147 148
|
syl2anr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
150 |
145 149
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
151 |
144 150
|
mulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
152 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ V ) |
153 |
|
c0ex |
⊢ 0 ∈ V |
154 |
|
ovex |
⊢ ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ∈ V |
155 |
153 154
|
ifex |
⊢ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V |
156 |
155
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V ) |
157 |
155
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ ℂ ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ V ) |
158 |
|
dvexp2 |
⊢ ( 𝑖 ∈ ℕ0 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ ℂ ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
159 |
147 158
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ ℂ ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
160 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ⊆ ℂ ) |
161 |
130
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
162 |
141 149 157 159 160 125 123 161
|
dvmptres |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
163 |
141 150 156 162 143
|
dvmptcmul |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
164 |
141 151 152 163
|
dvmptcl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
165 |
164
|
3impa |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
166 |
104
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑖 ∈ ℕ0 ) |
167 |
1
|
pserval2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
168 |
145 166 167
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
169 |
168
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
170 |
169
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) ) |
171 |
170 163
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
172 |
125 123 126 131 132 140 165 171
|
dvmptfsum |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
173 |
122 172
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
174 |
173
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ) |
175 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
176 |
|
resmpt |
⊢ ( ℕ ⊆ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ) |
177 |
175 176
|
ax-mp |
⊢ ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) |
178 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ↑ 𝑖 ) = ( 𝑥 ↑ 𝑖 ) ) |
179 |
178
|
oveq2d |
⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) |
180 |
179
|
mpteq2dv |
⊢ ( 𝑎 = 𝑥 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) ) |
181 |
|
oveq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 + 1 ) = ( 𝑛 + 1 ) ) |
182 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝐴 ‘ ( 𝑖 + 1 ) ) = ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) |
183 |
181 182
|
oveq12d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
184 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑥 ↑ 𝑖 ) = ( 𝑥 ↑ 𝑛 ) ) |
185 |
183 184
|
oveq12d |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
186 |
185
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
187 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
188 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ ( 𝑚 + 1 ) ) = ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) |
189 |
187 188
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
190 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) |
191 |
|
ovex |
⊢ ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ V |
192 |
189 190 191
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
193 |
192
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
194 |
193
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 1 ) · ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) · ( 𝑥 ↑ 𝑛 ) ) ) |
195 |
186 194
|
eqtr4i |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
196 |
180 195
|
eqtrdi |
⊢ ( 𝑎 = 𝑥 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
197 |
196
|
cbvmptv |
⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
198 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) |
199 |
198
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
200 |
199
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑧 → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
201 |
200
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑧 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) |
202 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
203 |
202
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
204 |
203
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℂ ) |
205 |
133 203
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
206 |
204 205
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ∈ ℂ ) |
207 |
206
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) : ℕ0 ⟶ ℂ ) |
208 |
|
fveq2 |
⊢ ( 𝑟 = 𝑗 → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) = ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) |
209 |
208
|
seqeq3d |
⊢ ( 𝑟 = 𝑗 → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) = seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ) |
210 |
209
|
eleq1d |
⊢ ( 𝑟 = 𝑗 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ ) ) |
211 |
210
|
cbvrabv |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑗 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ } |
212 |
211
|
supeq1i |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑗 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑗 ) ) ∈ dom ⇝ } , ℝ* , < ) |
213 |
198
|
seqeq3d |
⊢ ( 𝑦 = 𝑧 → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) = seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ) |
214 |
213
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) |
215 |
214
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) |
216 |
|
fveq2 |
⊢ ( 𝑗 = 𝑚 → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
217 |
216
|
mpteq2dv |
⊢ ( 𝑗 = 𝑚 → ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
218 |
215 217
|
syl5eq |
⊢ ( 𝑗 = 𝑚 → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
219 |
218
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
220 |
17
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) ∈ ℝ ) |
221 |
1 2 3 4 5 6
|
psercnlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ∈ ℝ+ ∧ ( abs ‘ 𝑎 ) < 𝑀 ∧ 𝑀 < 𝑅 ) ) |
222 |
221
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ+ ) |
223 |
222
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
224 |
197 207 212
|
radcnvcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
225 |
54 224
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
226 |
221
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) < 𝑀 ) |
227 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
228 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
229 |
228
|
fdmi |
⊢ dom abs = ℂ |
230 |
227 229
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ ℂ |
231 |
5 230
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
232 |
231
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
233 |
232
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ℂ ) |
234 |
233
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
235 |
222
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
236 |
|
avglt2 |
⊢ ( ( ( abs ‘ 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
237 |
234 235 236
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( abs ‘ 𝑎 ) < 𝑀 ↔ ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) ) |
238 |
226 237
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < 𝑀 ) |
239 |
222
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 0 ≤ 𝑀 ) |
240 |
235 239
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
241 |
222
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ∈ ℂ ) |
242 |
|
oveq1 |
⊢ ( 𝑤 = 𝑀 → ( 𝑤 ↑ 𝑖 ) = ( 𝑀 ↑ 𝑖 ) ) |
243 |
242
|
oveq2d |
⊢ ( 𝑤 = 𝑀 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) |
244 |
243
|
mpteq2dv |
⊢ ( 𝑤 = 𝑀 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
245 |
|
oveq1 |
⊢ ( 𝑎 = 𝑤 → ( 𝑎 ↑ 𝑖 ) = ( 𝑤 ↑ 𝑖 ) ) |
246 |
245
|
oveq2d |
⊢ ( 𝑎 = 𝑤 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) |
247 |
246
|
mpteq2dv |
⊢ ( 𝑎 = 𝑤 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) ) |
248 |
247
|
cbvmptv |
⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑤 ↑ 𝑖 ) ) ) ) |
249 |
|
nn0ex |
⊢ ℕ0 ∈ V |
250 |
249
|
mptex |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ∈ V |
251 |
244 248 250
|
fvmpt |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
252 |
241 251
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) |
253 |
252
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) ) = seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) ) |
254 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑖 ) ) |
255 |
|
oveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑖 ) ) |
256 |
254 255
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
257 |
256
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
258 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) |
259 |
258
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
260 |
259
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
261 |
257 260
|
syl5eq |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
262 |
261
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
263 |
1 262
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
264 |
|
fveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑠 ) ) |
265 |
264
|
seqeq3d |
⊢ ( 𝑟 = 𝑠 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ) |
266 |
265
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) ) |
267 |
266
|
cbvrabv |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } |
268 |
267
|
supeq1i |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } , ℝ* , < ) |
269 |
4 268
|
eqtri |
⊢ 𝑅 = sup ( { 𝑠 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ } , ℝ* , < ) |
270 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) |
271 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
272 |
221
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
273 |
240 272
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) < 𝑅 ) |
274 |
263 269 270 271 241 273
|
dvradcnv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑀 ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
275 |
253 274
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑀 ) ) ∈ dom ⇝ ) |
276 |
197 207 212 241 275
|
radcnvle |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( abs ‘ 𝑀 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
277 |
240 276
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑀 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
278 |
18 223 225 238 277
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( abs ‘ 𝑎 ) + 𝑀 ) / 2 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
279 |
197 201 207 212 219 220 278 41
|
pserulm |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
280 |
21
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
281 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) |
282 |
281
|
oveq2d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) = ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
283 |
282
|
mpteq2dv |
⊢ ( 𝑎 = 𝑦 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
284 |
|
eqid |
⊢ ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) = ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) |
285 |
249
|
mptex |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ∈ V |
286 |
283 284 285
|
fvmpt |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
287 |
280 286
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
288 |
287
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
289 |
288
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) ) |
290 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) |
291 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝐴 ‘ ( 𝑖 + 1 ) ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) |
292 |
290 291
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
293 |
|
oveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑦 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑘 ) ) |
294 |
292 293
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
295 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
296 |
|
ovex |
⊢ ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ V |
297 |
294 295 296
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
298 |
297
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
299 |
289 298
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
300 |
299
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
301 |
300
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
302 |
279 301
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
303 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
304 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
305 |
304
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
306 |
303 305
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
307 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 1 ∈ ℤ ) |
308 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 0 ∈ ℤ ) |
309 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
310 |
309
|
nn0cnd |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℂ ) |
311 |
310
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℂ ) |
312 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
313 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
314 |
312 309 313
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
315 |
311 314
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) ∈ ℂ ) |
316 |
280 148
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
317 |
315 316
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
318 |
287 317
|
fmpt3d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
319 |
318
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑚 ) ∈ ℂ ) |
320 |
8 308 319
|
serf |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) |
321 |
320
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ∈ ℂ ) |
322 |
321
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ∈ ℂ ) |
323 |
322
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ ) |
324 |
30 31
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) : 𝐵 ⟶ ℂ ) |
325 |
323 324
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
326 |
325
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
327 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℕ ) |
328 |
327
|
nnne0d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ≠ 0 ) |
329 |
328
|
neneqd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ¬ 𝑖 = 0 ) |
330 |
329
|
iffalsed |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) |
331 |
330
|
oveq2d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) |
332 |
331
|
sumeq2i |
⊢ Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) |
333 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ℤ ) |
334 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
335 |
334
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝑚 ∈ ℤ ) |
336 |
271
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
337 |
327
|
nnnn0d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℕ0 ) |
338 |
336 337 142
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
339 |
327
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℕ ) |
340 |
339
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℂ ) |
341 |
280
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
342 |
|
nnm1nn0 |
⊢ ( 𝑖 ∈ ℕ → ( 𝑖 − 1 ) ∈ ℕ0 ) |
343 |
327 342
|
syl |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → ( 𝑖 − 1 ) ∈ ℕ0 ) |
344 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑖 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) ∈ ℂ ) |
345 |
341 343 344
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) ∈ ℂ ) |
346 |
340 345
|
mulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ∈ ℂ ) |
347 |
338 346
|
mulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ∈ ℂ ) |
348 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) |
349 |
|
id |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → 𝑖 = ( 𝑘 + 1 ) ) |
350 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
351 |
350
|
oveq2d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑦 ↑ ( 𝑖 − 1 ) ) = ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) |
352 |
349 351
|
oveq12d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
353 |
348 352
|
oveq12d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
354 |
333 333 335 347 353
|
fsumshftm |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
355 |
332 354
|
syl5eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
356 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑚 ) ⊆ ( 0 ... 𝑚 ) |
357 |
356
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ... 𝑚 ) ⊆ ( 0 ... 𝑚 ) ) |
358 |
331
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) |
359 |
358 347
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
360 |
|
eldif |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) ↔ ( 𝑖 ∈ ( 0 ... 𝑚 ) ∧ ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) |
361 |
|
elfzuz2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
362 |
|
elfzp12 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑖 ∈ ( 0 ... 𝑚 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) ) |
363 |
361 362
|
syl |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( 𝑖 ∈ ( 0 ... 𝑚 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) ) |
364 |
363
|
ibi |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( 𝑖 = 0 ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) |
365 |
364
|
ord |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( ¬ 𝑖 = 0 → 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) ) |
366 |
365
|
con1d |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → ( ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) → 𝑖 = 0 ) ) |
367 |
366
|
imp |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑚 ) ∧ ¬ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑚 ) ) → 𝑖 = 0 ) |
368 |
360 367
|
sylbi |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) → 𝑖 = 0 ) |
369 |
304
|
oveq1i |
⊢ ( 1 ... 𝑚 ) = ( ( 0 + 1 ) ... 𝑚 ) |
370 |
369
|
difeq2i |
⊢ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) = ( ( 0 ... 𝑚 ) ∖ ( ( 0 + 1 ) ... 𝑚 ) ) |
371 |
368 370
|
eleq2s |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 = 0 ) |
372 |
371
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → 𝑖 = 0 ) |
373 |
372
|
iftrued |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) = 0 ) |
374 |
373
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑖 ) · 0 ) ) |
375 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ( 0 ... 𝑚 ) ) |
376 |
375 104
|
syl |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℕ0 ) |
377 |
336 376 142
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
378 |
377
|
mul01d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · 0 ) = 0 ) |
379 |
374 378
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 0 ... 𝑚 ) ∖ ( 1 ... 𝑚 ) ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = 0 ) |
380 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
381 |
357 359 379 380
|
fsumss |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) |
382 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
383 |
382
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) = ( 0 ... ( 𝑚 − 1 ) ) |
384 |
383
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
385 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
386 |
385
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
387 |
386 297
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
388 |
341
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑦 ∈ ℂ ) |
389 |
388 286
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ) |
390 |
389
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑦 ↑ 𝑖 ) ) ) ‘ 𝑘 ) ) |
391 |
336
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
392 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
393 |
386 392
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
394 |
391 393
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝐴 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
395 |
393
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
396 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
397 |
341 385 396
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
398 |
394 395 397
|
mul12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
399 |
386
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → 𝑘 ∈ ℂ ) |
400 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
401 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
402 |
399 400 401
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
403 |
402
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑦 ↑ 𝑘 ) ) |
404 |
403
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
405 |
404
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
406 |
395 394 397
|
mulassd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝑘 + 1 ) · ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
407 |
398 405 406
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
408 |
387 390 407
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
409 |
|
nnm1nn0 |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℕ0 ) |
410 |
409
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 − 1 ) ∈ ℕ0 ) |
411 |
410
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 − 1 ) ∈ ℕ0 ) |
412 |
411 8
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
413 |
403 397
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ∈ ℂ ) |
414 |
395 413
|
mulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ∈ ℂ ) |
415 |
394 414
|
mulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ∈ ℂ ) |
416 |
408 412 415
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
417 |
384 416
|
syl5eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑘 ∈ ( ( 1 − 1 ) ... ( 𝑚 − 1 ) ) ( ( 𝐴 ‘ ( 𝑘 + 1 ) ) · ( ( 𝑘 + 1 ) · ( 𝑦 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
418 |
355 381 417
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
419 |
418
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
420 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑚 − 1 ) → ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) |
421 |
420
|
mpteq2dv |
⊢ ( 𝑗 = ( 𝑚 − 1 ) → ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
422 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) |
423 |
31
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ∈ V |
424 |
421 422 423
|
fvmpt |
⊢ ( ( 𝑚 − 1 ) ∈ ℕ0 → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
425 |
410 424
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
426 |
419 425
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) = ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) ) |
427 |
426
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ‘ ( 𝑚 − 1 ) ) ) ) |
428 |
8 306 11 307 326 427
|
ulmshft |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑗 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ ( seq 0 ( + , ( ( 𝑎 ∈ ℂ ↦ ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 1 ) · ( 𝐴 ‘ ( 𝑖 + 1 ) ) ) · ( 𝑎 ↑ 𝑖 ) ) ) ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ↔ ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
429 |
302 428
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
430 |
177 429
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
431 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
432 |
431
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 1 ∈ ℕ0 ) |
433 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
434 |
164
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
435 |
433 434
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ∈ ℂ ) |
436 |
435
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ ) |
437 |
30 31
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ∈ ( ℂ ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) : 𝐵 ⟶ ℂ ) |
438 |
436 437
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ∈ ( ℂ ↑m 𝐵 ) ) |
439 |
438
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝐵 ) ) |
440 |
8 303 432 439
|
ulmres |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ↔ ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ↾ ℕ ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
441 |
430 440
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( ( 𝐴 ‘ 𝑖 ) · if ( 𝑖 = 0 , 0 , ( 𝑖 · ( 𝑦 ↑ ( 𝑖 − 1 ) ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
442 |
174 441
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑚 ∈ ℕ0 ↦ ( ℂ D ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝐵 ↦ Σ 𝑖 ∈ ( 0 ... 𝑘 ) ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑖 ) ) ) ‘ 𝑚 ) ) ) ( ⇝𝑢 ‘ 𝐵 ) ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
443 |
8 10 11 34 44 120 442
|
ulmdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( 𝑦 ∈ 𝐵 ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |