| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pserf.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | pserf.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑆  ↦  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | 
						
							| 3 |  | pserf.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 4 |  | pserf.r | ⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) | 
						
							| 5 |  | pserulm.h | ⊢ 𝐻  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 6 |  | pserulm.m | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 7 |  | pserulm.l | ⊢ ( 𝜑  →  𝑀  <  𝑅 ) | 
						
							| 8 |  | pserulm.y | ⊢ ( 𝜑  →  𝑆  ⊆  ( ◡ abs  “  ( 0 [,] 𝑀 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  𝑆  ⊆  ( ◡ abs  “  ( 0 [,] 𝑀 ) ) ) | 
						
							| 10 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 11 | 6 | rexrd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ* ) | 
						
							| 12 |  | icc0 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑀  ∈  ℝ* )  →  ( ( 0 [,] 𝑀 )  =  ∅  ↔  𝑀  <  0 ) ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( 𝜑  →  ( ( 0 [,] 𝑀 )  =  ∅  ↔  𝑀  <  0 ) ) | 
						
							| 14 | 13 | biimpar | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  ( 0 [,] 𝑀 )  =  ∅ ) | 
						
							| 15 | 14 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  ( ◡ abs  “  ( 0 [,] 𝑀 ) )  =  ( ◡ abs  “  ∅ ) ) | 
						
							| 16 |  | ima0 | ⊢ ( ◡ abs  “  ∅ )  =  ∅ | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  ( ◡ abs  “  ( 0 [,] 𝑀 ) )  =  ∅ ) | 
						
							| 18 | 9 17 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  𝑆  ⊆  ∅ ) | 
						
							| 19 |  | ss0 | ⊢ ( 𝑆  ⊆  ∅  →  𝑆  =  ∅ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  𝑆  =  ∅ ) | 
						
							| 21 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 22 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 23 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  0  ∈  ℤ ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 25 |  | cnvimass | ⊢ ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ⊆  dom  abs | 
						
							| 26 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 27 | 26 | fdmi | ⊢ dom  abs  =  ℂ | 
						
							| 28 | 25 27 | sseqtri | ⊢ ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ⊆  ℂ | 
						
							| 29 | 8 28 | sstrdi | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ℂ ) | 
						
							| 31 | 1 24 30 | psergf | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) | 
						
							| 32 | 31 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 33 | 21 23 32 | serf | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 34 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 35 | 34 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑦  ∈  𝑆 )  →  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 36 | 35 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) | 
						
							| 37 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 38 |  | ssexg | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ℂ  ∈  V )  →  𝑆  ∈  V ) | 
						
							| 39 | 29 37 38 | sylancl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑆  ∈  V ) | 
						
							| 41 |  | elmapg | ⊢ ( ( ℂ  ∈  V  ∧  𝑆  ∈  V )  →  ( ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( ℂ  ↑m  𝑆 )  ↔  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) | 
						
							| 42 | 37 40 41 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( ℂ  ↑m  𝑆 )  ↔  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) | 
						
							| 43 | 36 42 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  ( ℂ  ↑m  𝑆 ) ) | 
						
							| 44 | 43 5 | fmptd | ⊢ ( 𝜑  →  𝐻 : ℕ0 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 45 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | 
						
							| 46 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ( ◡ abs  “  ( 0 [,] 𝑀 ) ) ) | 
						
							| 47 |  | ffn | ⊢ ( abs : ℂ ⟶ ℝ  →  abs  Fn  ℂ ) | 
						
							| 48 |  | elpreima | ⊢ ( abs  Fn  ℂ  →  ( 𝑦  ∈  ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ↔  ( 𝑦  ∈  ℂ  ∧  ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 ) ) ) ) | 
						
							| 49 | 26 47 48 | mp2b | ⊢ ( 𝑦  ∈  ( ◡ abs  “  ( 0 [,] 𝑀 ) )  ↔  ( 𝑦  ∈  ℂ  ∧  ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 ) ) ) | 
						
							| 50 | 46 49 | sylib | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦  ∈  ℂ  ∧  ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 ) ) ) | 
						
							| 51 | 50 | simprd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 ) ) | 
						
							| 52 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 53 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑀  ∈  ℝ ) | 
						
							| 54 |  | elicc2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 )  ↔  ( ( abs ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝑦 )  ∧  ( abs ‘ 𝑦 )  ≤  𝑀 ) ) ) | 
						
							| 55 | 52 53 54 | sylancr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ 𝑦 )  ∈  ( 0 [,] 𝑀 )  ↔  ( ( abs ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝑦 )  ∧  ( abs ‘ 𝑦 )  ≤  𝑀 ) ) ) | 
						
							| 56 | 51 55 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝑦 )  ∧  ( abs ‘ 𝑦 )  ≤  𝑀 ) ) | 
						
							| 57 | 56 | simp1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 58 | 57 | rexrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 59 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑀  ∈  ℝ* ) | 
						
							| 60 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 61 | 1 3 4 | radcnvcl | ⊢ ( 𝜑  →  𝑅  ∈  ( 0 [,] +∞ ) ) | 
						
							| 62 | 60 61 | sselid | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑅  ∈  ℝ* ) | 
						
							| 64 | 56 | simp3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ 𝑦 )  ≤  𝑀 ) | 
						
							| 65 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑀  <  𝑅 ) | 
						
							| 66 | 58 59 63 64 65 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ 𝑦 )  <  𝑅 ) | 
						
							| 67 | 1 24 4 30 66 | radcnvlt2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  dom   ⇝  ) | 
						
							| 68 | 21 23 45 32 67 | isumcl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 69 | 68 2 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ ) | 
						
							| 70 | 21 22 44 69 | ulm0 | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 71 | 20 70 | syldan | ⊢ ( ( 𝜑  ∧  𝑀  <  0 )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 72 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 73 | 72 21 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 74 |  | eqid | ⊢ ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 76 | 75 | fveq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 )  =  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) | 
						
							| 77 | 76 | cbvmptv | ⊢ ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 )  =  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 79 | 78 | mpteq2dv | ⊢ ( 𝑚  =  𝑘  →  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 77 79 | eqtrid | ⊢ ( 𝑚  =  𝑘  →  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) | 
						
							| 81 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑖 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 83 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  𝑆  ∈  V ) | 
						
							| 84 | 83 | mptexd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 85 | 74 80 82 84 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑖 ) )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) | 
						
							| 86 | 40 73 85 | seqof | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 )  =  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 87 | 86 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  =  ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) | 
						
							| 88 | 87 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 89 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 90 |  | seqfn | ⊢ ( 0  ∈  ℤ  →  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ( ℤ≥ ‘ 0 ) ) | 
						
							| 91 | 89 90 | ax-mp | ⊢ seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ( ℤ≥ ‘ 0 ) | 
						
							| 92 | 21 | fneq2i | ⊢ ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ℕ0  ↔  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ( ℤ≥ ‘ 0 ) ) | 
						
							| 93 | 91 92 | mpbir | ⊢ seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ℕ0 | 
						
							| 94 |  | dffn5 | ⊢ ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  Fn  ℕ0  ↔  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 95 | 93 94 | mpbi | ⊢ seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) | 
						
							| 96 | 88 5 95 | 3eqtr4g | ⊢ ( 𝜑  →  𝐻  =  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝐻  =  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 98 |  | 0zd | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  0  ∈  ℤ ) | 
						
							| 99 | 39 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝑆  ∈  V ) | 
						
							| 100 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 101 | 29 | sselda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑆 )  →  𝑤  ∈  ℂ ) | 
						
							| 102 | 1 100 101 | psergf | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑤 ) : ℕ0 ⟶ ℂ ) | 
						
							| 103 | 102 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 104 | 103 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑤  ∈  𝑆 )  →  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 105 | 104 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) | 
						
							| 106 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑆  ∈  V ) | 
						
							| 107 |  | elmapg | ⊢ ( ( ℂ  ∈  V  ∧  𝑆  ∈  V )  →  ( ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) )  ∈  ( ℂ  ↑m  𝑆 )  ↔  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) | 
						
							| 108 | 37 106 107 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) )  ∈  ( ℂ  ↑m  𝑆 )  ↔  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) | 
						
							| 109 | 105 108 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) )  ∈  ( ℂ  ↑m  𝑆 ) ) | 
						
							| 110 | 109 | fmpttd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 112 |  | fex | ⊢ ( ( abs : ℂ ⟶ ℝ  ∧  ℂ  ∈  V )  →  abs  ∈  V ) | 
						
							| 113 | 26 37 112 | mp2an | ⊢ abs  ∈  V | 
						
							| 114 |  | fvex | ⊢ ( 𝐺 ‘ 𝑀 )  ∈  V | 
						
							| 115 | 113 114 | coex | ⊢ ( abs  ∘  ( 𝐺 ‘ 𝑀 ) )  ∈  V | 
						
							| 116 | 115 | a1i | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( abs  ∘  ( 𝐺 ‘ 𝑀 ) )  ∈  V ) | 
						
							| 117 | 3 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 118 | 6 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 119 | 118 | recnd | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝑀  ∈  ℂ ) | 
						
							| 120 | 1 117 119 | psergf | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) | 
						
							| 121 |  | fco | ⊢ ( ( abs : ℂ ⟶ ℝ  ∧  ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ )  →  ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) | 
						
							| 122 | 26 120 121 | sylancr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) | 
						
							| 123 | 122 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 124 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 125 |  | simprr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  𝑆 ) | 
						
							| 126 | 124 125 | sseldd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 127 |  | simprl | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 128 | 126 127 | expcld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 129 | 128 | abscld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑧 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 130 | 119 | adantr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 131 | 130 127 | expcld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑀 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 132 | 131 | abscld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑀 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 133 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 134 | 133 127 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 135 | 134 | abscld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 136 | 134 | absge0d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  0  ≤  ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 137 | 126 | abscld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 138 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 139 | 126 | absge0d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  0  ≤  ( abs ‘ 𝑧 ) ) | 
						
							| 140 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( abs ‘ 𝑦 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( abs ‘ 𝑦 )  ≤  𝑀  ↔  ( abs ‘ 𝑧 )  ≤  𝑀 ) ) | 
						
							| 142 | 64 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑆 ( abs ‘ 𝑦 )  ≤  𝑀 ) | 
						
							| 143 | 142 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ∀ 𝑦  ∈  𝑆 ( abs ‘ 𝑦 )  ≤  𝑀 ) | 
						
							| 144 | 141 143 125 | rspcdva | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ 𝑧 )  ≤  𝑀 ) | 
						
							| 145 |  | leexp1a | ⊢ ( ( ( ( abs ‘ 𝑧 )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 0  ≤  ( abs ‘ 𝑧 )  ∧  ( abs ‘ 𝑧 )  ≤  𝑀 ) )  →  ( ( abs ‘ 𝑧 ) ↑ 𝑘 )  ≤  ( 𝑀 ↑ 𝑘 ) ) | 
						
							| 146 | 137 138 127 139 144 145 | syl32anc | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( abs ‘ 𝑧 ) ↑ 𝑘 )  ≤  ( 𝑀 ↑ 𝑘 ) ) | 
						
							| 147 | 126 127 | absexpd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑧 ↑ 𝑘 ) )  =  ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ) | 
						
							| 148 | 130 127 | absexpd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑀 ↑ 𝑘 ) )  =  ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) ) | 
						
							| 149 |  | absid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  0  ≤  𝑀 )  →  ( abs ‘ 𝑀 )  =  𝑀 ) | 
						
							| 150 | 6 149 | sylan | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( abs ‘ 𝑀 )  =  𝑀 ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ 𝑀 )  =  𝑀 ) | 
						
							| 152 | 151 | oveq1d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( abs ‘ 𝑀 ) ↑ 𝑘 )  =  ( 𝑀 ↑ 𝑘 ) ) | 
						
							| 153 | 148 152 | eqtrd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑀 ↑ 𝑘 ) )  =  ( 𝑀 ↑ 𝑘 ) ) | 
						
							| 154 | 146 147 153 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( 𝑧 ↑ 𝑘 ) )  ≤  ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) | 
						
							| 155 | 129 132 135 136 154 | lemul2ad | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) )  ≤  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) | 
						
							| 156 | 134 128 | absmuld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 157 | 134 131 | absmuld | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) | 
						
							| 158 | 155 156 157 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ≤  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) ) ) | 
						
							| 159 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  𝑆  ∈  V ) | 
						
							| 160 | 159 | mptexd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 161 | 74 80 127 160 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) | 
						
							| 162 | 161 | fveq1d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) | 
						
							| 163 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 164 | 163 | fveq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 165 |  | eqid | ⊢ ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 166 |  | fvex | ⊢ ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 )  ∈  V | 
						
							| 167 | 164 165 166 | fvmpt | ⊢ ( 𝑧  ∈  𝑆  →  ( ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 168 | 167 | ad2antll | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑦  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 )  =  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 169 | 1 | pserval2 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 170 | 126 127 169 | syl2anc | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 171 | 162 168 170 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) )  =  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 173 | 120 | adantr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) | 
						
							| 174 |  | fvco3 | ⊢ ( ( ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) | 
						
							| 175 | 173 127 174 | syl2anc | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) | 
						
							| 176 | 1 | pserval2 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) ) | 
						
							| 177 | 130 127 176 | syl2anc | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) ) | 
						
							| 178 | 177 | fveq2d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) )  =  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) ) ) | 
						
							| 179 | 175 178 | eqtrd | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑀 ↑ 𝑘 ) ) ) ) | 
						
							| 180 | 158 172 179 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝑀 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑧  ∈  𝑆 ) )  →  ( abs ‘ ( ( ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) )  ≤  ( ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ) | 
						
							| 181 | 7 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝑀  <  𝑅 ) | 
						
							| 182 | 150 181 | eqbrtrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( abs ‘ 𝑀 )  <  𝑅 ) | 
						
							| 183 |  | id | ⊢ ( 𝑖  =  𝑚  →  𝑖  =  𝑚 ) | 
						
							| 184 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑚  →  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) | 
						
							| 185 | 183 184 | oveq12d | ⊢ ( 𝑖  =  𝑚  →  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) )  =  ( 𝑚  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) | 
						
							| 186 | 185 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝑚  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) | 
						
							| 187 | 1 117 4 119 182 186 | radcnvlt1 | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  ( seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) )  ∈  dom   ⇝   ∧  seq 0 (  +  ,  ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 188 | 187 | simprd | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  seq 0 (  +  ,  ( abs  ∘  ( 𝐺 ‘ 𝑀 ) ) )  ∈  dom   ⇝  ) | 
						
							| 189 | 21 98 99 111 116 123 180 188 | mtest | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  seq 0 (  ∘f   +  ,  ( 𝑚  ∈  ℕ0  ↦  ( 𝑤  ∈  𝑆  ↦  ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) )  ∈  dom  ( ⇝𝑢 ‘ 𝑆 ) ) | 
						
							| 190 | 97 189 | eqeltrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝐻  ∈  dom  ( ⇝𝑢 ‘ 𝑆 ) ) | 
						
							| 191 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) | 
						
							| 192 |  | ulmcl | ⊢ ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓  →  𝑓 : 𝑆 ⟶ ℂ ) | 
						
							| 193 | 192 | adantl | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝑓 : 𝑆 ⟶ ℂ ) | 
						
							| 194 | 193 | feqmptd | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝑓  =  ( 𝑦  ∈  𝑆  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 195 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  0  ∈  ℤ ) | 
						
							| 196 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  =  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | 
						
							| 197 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) | 
						
							| 198 | 197 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 199 | 44 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  𝐻 : ℕ0 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 200 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑆 ) | 
						
							| 201 |  | seqex | ⊢ seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  V | 
						
							| 202 | 201 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  V ) | 
						
							| 203 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 204 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  𝑆  ∈  V ) | 
						
							| 205 | 204 | mptexd | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  V ) | 
						
							| 206 | 5 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  ∈  V )  →  ( 𝐻 ‘ 𝑖 )  =  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 207 | 203 205 206 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑖 )  =  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | 
						
							| 208 | 207 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 )  =  ( ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) ) | 
						
							| 209 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  𝑦  ∈  𝑆 ) | 
						
							| 210 |  | fvex | ⊢ ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 )  ∈  V | 
						
							| 211 |  | eqid | ⊢ ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | 
						
							| 212 | 211 | fvmpt2 | ⊢ ( ( 𝑦  ∈  𝑆  ∧  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 )  ∈  V )  →  ( ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | 
						
							| 213 | 209 210 212 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑦  ∈  𝑆  ↦  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | 
						
							| 214 | 208 213 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 )  =  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) | 
						
							| 215 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) | 
						
							| 216 | 21 195 199 200 202 214 215 | ulmclm | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ⇝  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 217 | 21 195 196 198 216 | isumclim | ⊢ ( ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  ∧  𝑦  ∈  𝑆 )  →  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 218 | 217 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  ( 𝑦  ∈  𝑆  ↦  Σ 𝑗  ∈  ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 219 | 2 218 | eqtrid | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝐹  =  ( 𝑦  ∈  𝑆  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 220 | 194 219 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝑓  =  𝐹 ) | 
						
							| 221 | 191 220 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 222 | 221 | ex | ⊢ ( 𝜑  →  ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) | 
						
							| 223 | 222 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) | 
						
							| 224 |  | eldmg | ⊢ ( 𝐻  ∈  dom  ( ⇝𝑢 ‘ 𝑆 )  →  ( 𝐻  ∈  dom  ( ⇝𝑢 ‘ 𝑆 )  ↔  ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ) | 
						
							| 225 | 224 | ibi | ⊢ ( 𝐻  ∈  dom  ( ⇝𝑢 ‘ 𝑆 )  →  ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) | 
						
							| 226 | 223 225 | impel | ⊢ ( ( 𝜑  ∧  𝐻  ∈  dom  ( ⇝𝑢 ‘ 𝑆 ) )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 227 | 190 226 | syldan | ⊢ ( ( 𝜑  ∧  0  ≤  𝑀 )  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) | 
						
							| 228 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 229 | 71 227 6 228 | ltlecasei | ⊢ ( 𝜑  →  𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |