Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
pserf.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
3 |
|
pserf.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
pserf.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
5 |
|
pserulm.h |
⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
6 |
|
pserulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
7 |
|
pserulm.l |
⊢ ( 𝜑 → 𝑀 < 𝑅 ) |
8 |
|
pserulm.y |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
10 |
|
0xr |
⊢ 0 ∈ ℝ* |
11 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
12 |
|
icc0 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝜑 → ( ( 0 [,] 𝑀 ) = ∅ ↔ 𝑀 < 0 ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( 0 [,] 𝑀 ) = ∅ ) |
15 |
14
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ( ◡ abs “ ∅ ) ) |
16 |
|
ima0 |
⊢ ( ◡ abs “ ∅ ) = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → ( ◡ abs “ ( 0 [,] 𝑀 ) ) = ∅ ) |
18 |
9 17
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 ⊆ ∅ ) |
19 |
|
ss0 |
⊢ ( 𝑆 ⊆ ∅ → 𝑆 = ∅ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝑆 = ∅ ) |
21 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
22 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
23 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
25 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs |
26 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
27 |
26
|
fdmi |
⊢ dom abs = ℂ |
28 |
25 27
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ |
29 |
8 28
|
sstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
31 |
1 24 30
|
psergf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
32 |
31
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
33 |
21 23 32
|
serf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) : ℕ0 ⟶ ℂ ) |
34 |
33
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
35 |
34
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ ℂ ) |
36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) |
37 |
|
cnex |
⊢ ℂ ∈ V |
38 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
39 |
29 37 38
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
41 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
42 |
37 40 41
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
43 |
36 42
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
44 |
43 5
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
45 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
46 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) |
47 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
48 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) ) |
49 |
26 47 48
|
mp2b |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
50 |
46 49
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) ) |
51 |
50
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ) |
52 |
|
0re |
⊢ 0 ∈ ℝ |
53 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
54 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) |
55 |
52 53 54
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,] 𝑀 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) ) |
56 |
51 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) ≤ 𝑀 ) ) |
57 |
56
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
58 |
57
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ∈ ℝ* ) |
59 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 ∈ ℝ* ) |
60 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
61 |
1 3 4
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
62 |
60 61
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
64 |
56
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
65 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑀 < 𝑅 ) |
66 |
58 59 63 64 65
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ 𝑦 ) < 𝑅 ) |
67 |
1 24 4 30 66
|
radcnvlt2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
68 |
21 23 45 32 67
|
isumcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
69 |
68 2
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
70 |
21 22 44 69
|
ulm0 |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
71 |
20 70
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑀 < 0 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
72 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
73 |
72 21
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
74 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) |
76 |
75
|
fveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
77 |
76
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) |
78 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) |
79 |
78
|
mpteq2dv |
⊢ ( 𝑚 = 𝑘 → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
80 |
77 79
|
syl5eq |
⊢ ( 𝑚 = 𝑘 → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
81 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 ) |
82 |
81
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
83 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑆 ∈ V ) |
84 |
83
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
85 |
74 80 82 84
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
86 |
40 73 85
|
seqof |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
87 |
86
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
88 |
87
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) |
89 |
|
0z |
⊢ 0 ∈ ℤ |
90 |
|
seqfn |
⊢ ( 0 ∈ ℤ → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
91 |
89 90
|
ax-mp |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) |
92 |
21
|
fneq2i |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
93 |
91 92
|
mpbir |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 |
94 |
|
dffn5 |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) ) |
95 |
93 94
|
mpbi |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ‘ 𝑖 ) ) |
96 |
88 5 95
|
3eqtr4g |
⊢ ( 𝜑 → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 = seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ) |
98 |
|
0zd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 0 ∈ ℤ ) |
99 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑆 ∈ V ) |
100 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
101 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ℂ ) |
102 |
1 100 101
|
psergf |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑤 ) : ℕ0 ⟶ ℂ ) |
103 |
102
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
104 |
103
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ∈ ℂ ) |
105 |
104
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) |
106 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑆 ∈ V ) |
107 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) |
108 |
37 106 107
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) : 𝑆 ⟶ ℂ ) ) |
109 |
105 108
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
110 |
109
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
112 |
|
fex |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) |
113 |
26 37 112
|
mp2an |
⊢ abs ∈ V |
114 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑀 ) ∈ V |
115 |
113 114
|
coex |
⊢ ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V |
116 |
115
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ∈ V ) |
117 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
119 |
118
|
recnd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℂ ) |
120 |
1 117 119
|
psergf |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
121 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) |
122 |
26 120 121
|
sylancr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) : ℕ0 ⟶ ℝ ) |
123 |
122
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ ℝ ) |
124 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ ℂ ) |
125 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
126 |
124 125
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ℂ ) |
127 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑘 ∈ ℕ0 ) |
128 |
126 127
|
expcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
129 |
128
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ∈ ℝ ) |
130 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℂ ) |
131 |
130 127
|
expcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 ↑ 𝑘 ) ∈ ℂ ) |
132 |
131
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ∈ ℝ ) |
133 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
134 |
133 127
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
135 |
134
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
136 |
134
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
137 |
126
|
abscld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
138 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℝ ) |
139 |
126
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ ( abs ‘ 𝑧 ) ) |
140 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝑧 ) ) |
141 |
140
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ 𝑦 ) ≤ 𝑀 ↔ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) |
142 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
143 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( abs ‘ 𝑦 ) ≤ 𝑀 ) |
144 |
141 143 125
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑧 ) ≤ 𝑀 ) |
145 |
|
leexp1a |
⊢ ( ( ( ( abs ‘ 𝑧 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( abs ‘ 𝑧 ) ∧ ( abs ‘ 𝑧 ) ≤ 𝑀 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) |
146 |
137 138 127 139 144 145
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ≤ ( 𝑀 ↑ 𝑘 ) ) |
147 |
126 127
|
absexpd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑧 ) ↑ 𝑘 ) ) |
148 |
130 127
|
absexpd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) ) |
149 |
|
absid |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
150 |
6 149
|
sylan |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ 𝑀 ) = 𝑀 ) |
152 |
151
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ 𝑀 ) ↑ 𝑘 ) = ( 𝑀 ↑ 𝑘 ) ) |
153 |
148 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) = ( 𝑀 ↑ 𝑘 ) ) |
154 |
146 147 153
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ≤ ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) |
155 |
129 132 135 136 154
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
156 |
134 128
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑧 ↑ 𝑘 ) ) ) ) |
157 |
134 131
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑀 ↑ 𝑘 ) ) ) ) |
158 |
155 156 157
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
159 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ∈ V ) |
160 |
159
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ∈ V ) |
161 |
74 80 127 160
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ) |
162 |
161
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
163 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
164 |
163
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
165 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) |
166 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ∈ V |
167 |
164 165 166
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
168 |
167
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) ) |
169 |
1
|
pserval2 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
170 |
126 127 169
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
171 |
162 168 170
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
172 |
171
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
173 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ) |
174 |
|
fvco3 |
⊢ ( ( ( 𝐺 ‘ 𝑀 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) |
175 |
173 127 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) ) |
176 |
1
|
pserval2 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
177 |
130 127 176
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) |
178 |
177
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
179 |
175 178
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑀 ↑ 𝑘 ) ) ) ) |
180 |
158 172 179
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝑀 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ‘ 𝑘 ) ) |
181 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝑀 < 𝑅 ) |
182 |
150 181
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( abs ‘ 𝑀 ) < 𝑅 ) |
183 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
184 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑚 → ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) |
185 |
183 184
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
186 |
185
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
187 |
1 117 4 119 182 186
|
radcnvlt1 |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → ( seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( abs ‘ ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑖 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) ) |
188 |
187
|
simprd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑀 ) ) ) ∈ dom ⇝ ) |
189 |
21 98 99 111 116 123 180 188
|
mtest |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑤 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
190 |
97 189
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
191 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
192 |
|
ulmcl |
⊢ ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝑓 : 𝑆 ⟶ ℂ ) |
193 |
192
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 : 𝑆 ⟶ ℂ ) |
194 |
193
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
195 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
196 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) |
197 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) : ℕ0 ⟶ ℂ ) |
198 |
197
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ∈ ℂ ) |
199 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 : ℕ0 ⟶ ( ℂ ↑m 𝑆 ) ) |
200 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
201 |
|
seqex |
⊢ seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V |
202 |
201
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ∈ V ) |
203 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
204 |
39
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ V ) |
205 |
204
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) |
206 |
5
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
207 |
203 205 206
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑖 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
208 |
207
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) ) |
209 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑦 ∈ 𝑆 ) |
210 |
|
fvex |
⊢ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V |
211 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
212 |
211
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
213 |
209 210 212
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
214 |
208 213
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐻 ‘ 𝑖 ) ‘ 𝑦 ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
215 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
216 |
21 195 199 200 202 214 215
|
ulmclm |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ⇝ ( 𝑓 ‘ 𝑦 ) ) |
217 |
21 195 196 198 216
|
isumclim |
⊢ ( ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) = ( 𝑓 ‘ 𝑦 ) ) |
218 |
217
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
219 |
2 218
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐹 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
220 |
194 219
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝑓 = 𝐹 ) |
221 |
191 220
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
222 |
221
|
ex |
⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
223 |
222
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) ) |
224 |
|
eldmg |
⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) ) |
225 |
224
|
ibi |
⊢ ( 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑓 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝑓 ) |
226 |
223 225
|
impel |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
227 |
190 226
|
syldan |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝑀 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
228 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
229 |
71 227 6 228
|
ltlecasei |
⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |