Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑚 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
4 |
3
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑚 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑚 ) ) |
7 |
5 6
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑚 ) = ( 𝑦 ↑ 𝑚 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) |
11 |
10
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
12 |
8 11
|
syl5eq |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
13 |
12
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
14 |
1 13
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑦 ↑ 𝑚 ) ) ) ) |
15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ V |
17 |
4 14 16
|
fvmpt |
⊢ ( 𝑋 ∈ ℂ → ( 𝐺 ‘ 𝑋 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |