| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgninv.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
psgninv.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
| 3 |
|
psgninv.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 5 |
1 3 4
|
symgov |
⊢ ( ( 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 6 |
5
|
3adant1 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 8 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 9 |
1 2 8
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 10 |
|
prex |
⊢ { 1 , - 1 } ∈ V |
| 11 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 12 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 13 |
11 12
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 14 |
8 13
|
ressplusg |
⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 15 |
10 14
|
ax-mp |
⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 16 |
3 4 15
|
ghmlin |
⊢ ( ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
| 17 |
9 16
|
syl3an1 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
| 18 |
7 17
|
eqtr3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |