Step |
Hyp |
Ref |
Expression |
1 |
|
psgninv.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgninv.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
3 |
|
psgninv.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
5 |
1 3 4
|
symgov |
⊢ ( ( 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
8 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
9 |
1 2 8
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
10 |
|
prex |
⊢ { 1 , - 1 } ∈ V |
11 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
12 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
13 |
11 12
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
14 |
8 13
|
ressplusg |
⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
15 |
10 14
|
ax-mp |
⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
16 |
3 4 15
|
ghmlin |
⊢ ( ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
17 |
9 16
|
syl3an1 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |
18 |
7 17
|
eqtr3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃 ) → ( 𝑁 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝑁 ‘ 𝐺 ) ) ) |