Step |
Hyp |
Ref |
Expression |
1 |
|
psgndif.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
psgndif.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
psgndif.z |
⊢ 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
4 |
|
eqid |
⊢ ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
5 |
|
eqid |
⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
6 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
7 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝑁 ) = ran ( pmTrsp ‘ 𝑁 ) |
8 |
1 4 5 6 7
|
psgnfix2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
11 |
1 4 5 6 7
|
psgndiflemA |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
13 |
12
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
14 |
13
|
adantlrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
16 |
15
|
ad2antll |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
18 |
14 17
|
sylibrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
19 |
18
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∀ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
20 |
10 19
|
r19.29imd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
21 |
20
|
rexlimdva2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
22 |
1 4 5
|
psgnfix1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) |
25 |
|
simp-4l |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ) |
26 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
28 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) |
29 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) |
30 |
27 28 29
|
3jca |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ) |
31 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
33 |
25 30 32 11
|
syl3c |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
34 |
33
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
35 |
34
|
ex |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
36 |
35
|
adantlrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
37 |
|
eqeq1 |
⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
38 |
37
|
ad2antll |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
40 |
36 39
|
sylibrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∀ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
42 |
24 41
|
r19.29imd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
43 |
42
|
rexlimdva2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
44 |
21 43
|
impbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
45 |
44
|
iotabidv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
46 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
48 |
|
eqid |
⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
49 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
50 |
|
eqid |
⊢ ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } ) |
51 |
1 48 49 50
|
symgfixelsi |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
52 |
51
|
adantll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
53 |
5 49 4 3
|
psgnvalfi |
⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
54 |
47 52 53
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
55 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
56 |
|
elrabi |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) |
57 |
6 1 7 2
|
psgnvalfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
58 |
55 56 57
|
syl2an |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑆 ‘ 𝑄 ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
59 |
45 54 58
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) |
60 |
59
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) ) |