Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
psgnfix.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
3 |
|
psgnfix.s |
⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
4 |
|
psgnfix.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) |
5 |
|
psgnfix.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ↔ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) ) |
8 |
6
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ↔ ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
14 |
8 13
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
15 |
7 14
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ↔ ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
17 |
16
|
rspccv |
⊢ ( ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( 𝑊 ∈ Word 𝑇 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
18 |
2 5
|
pmtrdifwrdel2 |
⊢ ( 𝐾 ∈ 𝑁 → ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
19 |
17 18
|
syl11 |
⊢ ( 𝑊 ∈ Word 𝑇 → ( 𝐾 ∈ 𝑁 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝐾 ∈ 𝑁 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
21 |
20
|
com12 |
⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
24 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
26 |
25
|
ad3antlr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
27 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → 𝑁 ∈ Fin ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑁 ∈ Fin ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑟 ∈ Word 𝑅 ) |
30 |
|
simprr3 |
⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → 𝑈 ∈ Word 𝑅 ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑈 ∈ Word 𝑅 ) |
32 |
|
simplrl |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ) |
33 |
|
3simpa |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) |
36 |
|
simplrl |
⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) |
38 |
|
simplrr |
⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
40 |
1 2 3 4 5
|
psgndiflemB |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑄 = ( 𝑍 Σg 𝑟 ) ) ) ) |
41 |
40
|
imp31 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 = ( 𝑍 Σg 𝑟 ) ) |
42 |
41
|
eqcomd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑟 ) = 𝑄 ) |
43 |
32 35 29 37 39 42
|
syl23anc |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑍 Σg 𝑟 ) = 𝑄 ) |
44 |
|
id |
⊢ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) |
45 |
4
|
eqcomi |
⊢ ( SymGrp ‘ 𝑁 ) = 𝑍 |
46 |
45
|
oveq1i |
⊢ ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) = ( 𝑍 Σg 𝑈 ) |
47 |
44 46
|
eqtrdi |
⊢ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
48 |
47
|
adantl |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
49 |
43 48
|
eqtrd |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑍 Σg 𝑟 ) = ( 𝑍 Σg 𝑈 ) ) |
50 |
4 5 28 29 31 49
|
psgnuni |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) |
51 |
26 50
|
eqtrd |
⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) |
52 |
51
|
ex |
⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) |
53 |
52
|
ex |
⊢ ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |
54 |
53
|
rexlimiva |
⊢ ( ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |
55 |
23 54
|
mpcom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) |
56 |
55
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |