| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnfix.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 2 |
|
psgnfix.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
| 3 |
|
psgnfix.s |
⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
| 4 |
|
psgnfix.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) |
| 5 |
|
psgnfix.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
| 6 |
|
elrabi |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) |
| 7 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 8 |
7 1
|
symgbasf |
⊢ ( 𝑄 ∈ 𝑃 → 𝑄 : 𝑁 ⟶ 𝑁 ) |
| 9 |
|
ffn |
⊢ ( 𝑄 : 𝑁 ⟶ 𝑁 → 𝑄 Fn 𝑁 ) |
| 10 |
6 8 9
|
3syl |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 Fn 𝑁 ) |
| 11 |
10
|
ad3antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 Fn 𝑁 ) |
| 12 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → 𝑁 ∈ Fin ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) → 𝑁 ∈ Fin ) |
| 15 |
|
simp1 |
⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑈 ∈ Word 𝑅 ) |
| 16 |
4
|
eqcomi |
⊢ ( SymGrp ‘ 𝑁 ) = 𝑍 |
| 17 |
16
|
fveq2i |
⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ 𝑍 ) |
| 18 |
1 17
|
eqtri |
⊢ 𝑃 = ( Base ‘ 𝑍 ) |
| 19 |
4 18 5
|
gsmtrcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑍 Σg 𝑈 ) ∈ 𝑃 ) |
| 20 |
14 15 19
|
syl2an |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑈 ) ∈ 𝑃 ) |
| 21 |
7 1
|
symgbasf |
⊢ ( ( 𝑍 Σg 𝑈 ) ∈ 𝑃 → ( 𝑍 Σg 𝑈 ) : 𝑁 ⟶ 𝑁 ) |
| 22 |
|
ffn |
⊢ ( ( 𝑍 Σg 𝑈 ) : 𝑁 ⟶ 𝑁 → ( 𝑍 Σg 𝑈 ) Fn 𝑁 ) |
| 23 |
20 21 22
|
3syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑈 ) Fn 𝑁 ) |
| 24 |
12
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑁 ∈ Fin ) |
| 25 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝐾 ∈ 𝑁 ) |
| 26 |
25
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝐾 ∈ 𝑁 ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 28 |
5 4 27
|
symgtrf |
⊢ 𝑅 ⊆ ( Base ‘ 𝑍 ) |
| 29 |
|
sswrd |
⊢ ( 𝑅 ⊆ ( Base ‘ 𝑍 ) → Word 𝑅 ⊆ Word ( Base ‘ 𝑍 ) ) |
| 30 |
29
|
sseld |
⊢ ( 𝑅 ⊆ ( Base ‘ 𝑍 ) → ( 𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) ) |
| 31 |
28 30
|
ax-mp |
⊢ ( 𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 34 |
24 26 33
|
3jca |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) ) |
| 35 |
|
simpl |
⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 36 |
35
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 37 |
36
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 38 |
37
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 39 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
39
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 41 |
40
|
raleqdv |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 44 |
38 43
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 45 |
4 27
|
gsmsymgrfix |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 46 |
34 44 45
|
sylc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) = 𝐾 ) |
| 47 |
46
|
eqcomd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝐾 = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → 𝐾 = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝐾 ) ) |
| 50 |
|
fveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) |
| 51 |
50
|
eqeq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ‘ 𝐾 ) = 𝐾 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐾 ) ) |
| 52 |
51
|
elrab |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐾 ) ) |
| 53 |
52
|
simprbi |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑄 ‘ 𝐾 ) = 𝐾 ) |
| 54 |
53
|
ad3antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) = 𝐾 ) |
| 55 |
49 54
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( 𝑄 ‘ 𝑘 ) = 𝐾 ) |
| 56 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 58 |
48 55 57
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 59 |
58
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 61 |
60
|
com12 |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 62 |
|
fveq1 |
⊢ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 64 |
63
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 67 |
|
neqne |
⊢ ( ¬ 𝑘 = 𝐾 → 𝑘 ≠ 𝐾 ) |
| 68 |
66 67
|
anim12i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) |
| 69 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) |
| 70 |
68 69
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 71 |
70
|
fvresd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 72 |
71
|
exp31 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) ) |
| 73 |
72
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) ) |
| 74 |
73
|
imp |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) |
| 75 |
74
|
impcom |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 78 |
76 77
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 79 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
| 80 |
79
|
ancri |
⊢ ( 𝑁 ∈ Fin → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 82 |
81
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 83 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 84 |
2 3 83
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝑆 ) |
| 85 |
|
sswrd |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝑆 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝑆 ) ) |
| 86 |
85
|
sseld |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝑆 ) → ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) ) |
| 87 |
84 86
|
ax-mp |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 88 |
87
|
ad2antrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 89 |
88
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 90 |
|
simpr2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |
| 91 |
89 33 90
|
3jca |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) |
| 92 |
82 91
|
jca |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) ) |
| 93 |
92
|
ad2antrl |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) ) |
| 94 |
|
simpr |
⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 95 |
94
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 96 |
95
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 97 |
96
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 98 |
97
|
ad2antrl |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 99 |
|
incom |
⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) = ( 𝑁 ∩ ( 𝑁 ∖ { 𝐾 } ) ) |
| 100 |
|
indif |
⊢ ( 𝑁 ∩ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑁 ∖ { 𝐾 } ) |
| 101 |
99 100
|
eqtri |
⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) = ( 𝑁 ∖ { 𝐾 } ) |
| 102 |
101
|
eqcomi |
⊢ ( 𝑁 ∖ { 𝐾 } ) = ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) |
| 103 |
3 83 4 27 102
|
gsmsymgreq |
⊢ ( ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 104 |
93 98 103
|
sylc |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) |
| 105 |
67
|
anim2i |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) |
| 106 |
105 69
|
sylibr |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 107 |
106
|
ex |
⊢ ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 108 |
107
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ¬ 𝑘 = 𝐾 → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 109 |
108
|
impcom |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 110 |
78 104 109
|
rspcdva |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 111 |
65 75 110
|
3eqtr3d |
⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 112 |
111
|
ex |
⊢ ( ¬ 𝑘 = 𝐾 → ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 113 |
61 112
|
pm2.61i |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 114 |
11 23 113
|
eqfnfvd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
| 115 |
114
|
exp31 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) ) ) |