Step |
Hyp |
Ref |
Expression |
1 |
|
psgneldm.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgneldm.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
3 |
|
psgneldm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
difeq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∖ I ) = ( 𝑃 ∖ I ) ) |
5 |
4
|
dmeqd |
⊢ ( 𝑝 = 𝑃 → dom ( 𝑝 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑝 = 𝑃 → ( dom ( 𝑝 ∖ I ) ∈ Fin ↔ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
7 |
|
eqid |
⊢ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
8 |
1 3 7 2
|
psgnfn |
⊢ 𝑁 Fn { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
9 |
8
|
fndmi |
⊢ dom 𝑁 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
10 |
6 9
|
elrab2 |
⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ 𝐵 ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |