Step |
Hyp |
Ref |
Expression |
1 |
|
psgnval.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnval.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
3 |
|
psgnval.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
4 |
|
eqid |
⊢ ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) |
5 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) |
6 |
5
|
rspceeqv |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ) → ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) |
7 |
4 6
|
mpan2 |
⊢ ( 𝑊 ∈ Word 𝑇 → ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) |
8 |
1 2 3
|
psgneldm2 |
⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) ) |
9 |
8
|
biimpar |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |
10 |
7 9
|
sylan2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |