Step |
Hyp |
Ref |
Expression |
1 |
|
psgnval.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnval.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
3 |
|
psgnval.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
1 3 4
|
psgneldm |
⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ ( Base ‘ 𝐺 ) ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑃 ∈ dom 𝑁 → 𝑃 ∈ ( Base ‘ 𝐺 ) ) |
7 |
1 4
|
elbasfv |
⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → 𝐷 ∈ V ) |
8 |
6 7
|
syl |
⊢ ( 𝑃 ∈ dom 𝑁 → 𝐷 ∈ V ) |
9 |
1 2 3
|
psgneldm2 |
⊢ ( 𝐷 ∈ V → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |
11 |
10
|
ibi |
⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) ∧ 𝑃 = ( 𝐺 Σg 𝑤 ) ) → 𝑃 = ( 𝐺 Σg 𝑤 ) ) |
13 |
|
eqid |
⊢ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) |
14 |
|
ovex |
⊢ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ V |
15 |
|
eqeq1 |
⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
17 |
14 16
|
spcev |
⊢ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
18 |
12 13 17
|
sylancl |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) ∧ 𝑃 = ( 𝐺 Σg 𝑤 ) ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
19 |
18
|
ex |
⊢ ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( 𝑃 = ( 𝐺 Σg 𝑤 ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
20 |
19
|
reximdva |
⊢ ( 𝑃 ∈ dom 𝑁 → ( ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) → ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
21 |
11 20
|
mpd |
⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
22 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
23 |
21 22
|
sylib |
⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
24 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑥 ∈ Word 𝑇 ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) |
25 |
8
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝐷 ∈ V ) |
26 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑤 ∈ Word 𝑇 ) |
27 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑥 ∈ Word 𝑇 ) |
28 |
|
simprll |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑃 = ( 𝐺 Σg 𝑤 ) ) |
29 |
|
simprrl |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑃 = ( 𝐺 Σg 𝑥 ) ) |
30 |
28 29
|
eqtr3d |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) |
31 |
1 2 25 26 27 30
|
psgnuni |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
32 |
|
simprlr |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
33 |
|
simprrr |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
34 |
31 32 33
|
3eqtr4d |
⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑠 = 𝑡 ) |
35 |
34
|
ex |
⊢ ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) → ( ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
36 |
35
|
rexlimdvva |
⊢ ( 𝑃 ∈ dom 𝑁 → ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑥 ∈ Word 𝑇 ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
37 |
24 36
|
syl5bir |
⊢ ( 𝑃 ∈ dom 𝑁 → ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
38 |
37
|
alrimivv |
⊢ ( 𝑃 ∈ dom 𝑁 → ∀ 𝑠 ∀ 𝑡 ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
39 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
41 |
40
|
rexbidv |
⊢ ( 𝑠 = 𝑡 → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) |
43 |
42
|
eqeq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑃 = ( 𝐺 Σg 𝑤 ) ↔ 𝑃 = ( 𝐺 Σg 𝑥 ) ) ) |
44 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑥 ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) |
47 |
43 46
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) |
48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) |
49 |
41 48
|
bitrdi |
⊢ ( 𝑠 = 𝑡 → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) |
50 |
49
|
eu4 |
⊢ ( ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∀ 𝑠 ∀ 𝑡 ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) ) |
51 |
23 38 50
|
sylanbrc |
⊢ ( 𝑃 ∈ dom 𝑁 → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |